Advertisement

The Journal of Membrane Biology

, Volume 99, Issue 2, pp 113–125 | Cite as

Common characteristics for Na+-dependent sugar transport in Caco-2 cells and human fetal colon

  • Anne Blais
  • Pierre Bissonnette
  • Alfred Berteloot
Articles

Summary

The recent demonstration that the human colon adenocarcinoma cell line Caco-2 was susceptible to spontaneous enterocytic differentiation led us to consider the question as to whether Caco-2 cells would exhibit sodium-coupled transport of sugars. This problem was investigated using isotopic tracer flux measurements of the nonmetabolizable sugar analog α-methylglucoside (AMG). AMG accumulation in confluent monolayers was inhibited to the same extent by sodium replacement, 200 μm phlorizin, 1mm phloretin, and 25mm d-glucose, but was not inhibited further in the presence of both phlorizin and phloretin. Kinetic studies were compatible with the presence of both a simple diffusive process and a single, Na+-dependent, phlorizin-and phloretin-sensitive AMG transport system. These results also ruled out any interaction between AMG and a Na+-independent, phloretin-sensitive, facilitated diffusion pathway. The brush-border membrane localization of the Na+-dependent system was inferred from the observations that its functional differentiation was synchronous with the development of brush-border membrane enzyme activities and that phlorizin and phloretin addition 1 hr after initiating sugar transport produced immediate inhibition of AMG uptake as compared to ouabain. Finally, it was shown that brush-border membrane vesicles isolated from the human fetal colonic mucosa do possess a Na+-dependent transport pathway(s) ford-glucose which was inhibited by AMG and both phlorizin and phloretin. Caco-2 cells thus appear as a valuable cell culture model to study the mechanisms involved in the differentiation and regulation of intestinal transport functions.

Key words

sugar transport characterization cell culture (Caco-2) fetal colon (human) differentiation functional development 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alvarado, F. 1967. Hypothesis for the interaction of phlorizin and phloretin with membrane carriers for sugars.Biochim. Biophys. Acta 135:483–495PubMedGoogle Scholar
  2. 2.
    Berteloot, A. 1984. Characterization of glutamic acid transport by rabbit intestinal brush-border membrane vesicles. Effect of Na+-, K+-and H+-gradients.Biochim. Biophys. Acta 775:129–140PubMedGoogle Scholar
  3. 3.
    Berteloot, A., Chabot, J.G., Hugon, J.S. 1981. Turnover of mouse intestinal brush border membrane proteins and enzymes in organ culture. A direct evaluation from studies on the evolution of enzyme activities during the culture.Biochim. Biophys. Acta 678:423–436PubMedGoogle Scholar
  4. 4.
    Cezard, J.P., Conklin, K.A., Das, B.C., Gray, G.M. 1979. Incomplete intracellular forms of intestinal surface membrane sucrase-isomaltase.J. Biol. Chem. 254:8969–8975PubMedGoogle Scholar
  5. 5.
    Colombo, V.E., Semenza, G. 1972. An example of mutual competition between transport inhibitors of different kinetic type: The inhibition of intestinal transport of glucalogues by phloretin and phlorizin.Biochim. Biophys. Acta 288:145–152PubMedGoogle Scholar
  6. 6.
    Dahlqvist, A. 1964. Method for assay of intestinal disacharidases.Anal. Biochem. 7:18–25Google Scholar
  7. 7.
    Eichholz, A. 1967. Structural and functional organization of the brush border of intestinal epithelial cells. III. Enzymic activities and chemical composition of various fractions of tris-disrupted brush borders.Biochim. Biophys. Acta 135:475–482PubMedGoogle Scholar
  8. 8.
    Falchuk, Z.M., Gebhard, R.L., Sessons, C., Strober, W. 1974. An in vitro model of glutensensitive enteropathy: Effect of gliadin on intestinal epithelial cells of patients with glutensensitive enteropathy in organ culture.J. Clin. Invest. 53:487–500PubMedGoogle Scholar
  9. 9.
    Fiske, C.H., Subbarow, Y. 1925. The colorimetric determination of phosphorus.J. Biol. Chem. 66:375–400Google Scholar
  10. 10.
    Fogh, J., Fogh, J.M., Orfeo, T. 1977. One hundred and twenty seven cultured human tumor cell lines producing tumors in nude mice.J. Natl. Canc. Inst. 59:221–226Google Scholar
  11. 11.
    Galand, G., Forstner, G.G. 1974. Isolation of microvillus plasma membranes from suckling-rat intestine. The influence of premature induction of digestive enzymes by injection of cortisol acetate.Biochem. J. 144:293–302PubMedGoogle Scholar
  12. 12.
    Goldbarg, J.A., Rutenburg, A.M. 1958. The colorimetric determination of leucine aminopeptidase in urine and serum of normal subjects and patients with cancer and other diseases.Cancer 11:283–291PubMedGoogle Scholar
  13. 13.
    Grand, R.J., Watkins, J.B., Torti, F.M. 1976. Development of the human gastrointestinal tract. A review.Gastroenterology 70:790–810PubMedGoogle Scholar
  14. 14.
    Grasset, E., Bernabeu, J., Pinto, M. 1985. Epithelial properties of human colonic carcinoma cell line Caco-2: Effect of secretagogues.Am. J. Physiol. 248:C410-C418PubMedGoogle Scholar
  15. 15.
    Grasset, E., Pinto, M., Dussaulx, E., Zweibaum, A., Desjeux, J.F. 1984. Epithelial properties of human colonic carcinoma cell line Caco-2: Electrical parameters.Am. J. Physiol. 247:C260-C267PubMedGoogle Scholar
  16. 16.
    Hauri, H.P. 1986. Use of monoclonal antibodies to investigate the intracellular transport and biogenesis of intestinal brush-border proteins.Biochem. Soc. Trans. 14:161–163PubMedGoogle Scholar
  17. 17.
    Hauri, H.P., Kedinger, M., Haffen, K., Grenier, J.F., Hadorn, B. 1975. Organ culture of human duodenum and jejunum.Biol. Gastroenterol. 8:307–319Google Scholar
  18. 18.
    Hopfer, U., Nelson, K., Perrotto, J., Isselbacher, K.J. 1973. Glucose transport in isolated brush border membrane from rat small intestine.J. Biol. Chem. 248:25–32Google Scholar
  19. 19.
    Kimmich, G.A., Randles, J. 1975. A Na+-independent, phloretin-sensitive monosaccharide transport system in isolated intestinal epithelial cells.J. Membrane Biol. 23:57–76Google Scholar
  20. 20.
    Kimmich, G.A., Randles, J. 1981. α-Methylglucoside satisfies only Na+-dependent transport system of intestinal epithelium.Am. J. Physiol. 241:C227-C232PubMedGoogle Scholar
  21. 21.
    Lee, A.J., McInerney, P.J., Mullins, P.R. 1984. Statcalc: An integrated statistics system for the Apple II microcomputer.Comput. Prog. Biomed. 18:265–272Google Scholar
  22. 22.
    Lloyd, J.B., Whelan, W.J. 1969. An improved method for enzymic determination of glucose in the presence of maltose.Anal. Biochem. 30:467–470PubMedGoogle Scholar
  23. 23.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265–275PubMedGoogle Scholar
  24. 24.
    Maestracci, D., Preiser, H., Hedges, T., Schmitz, J., Crane, R.K. 1975. Enzymes of the human intestinal brush border membrane, identification after gel electrophoretic separation.Biochim. Biophys. Acta 383:147–156PubMedGoogle Scholar
  25. 25.
    Maze, M., Gray, G.M. 1980. Intestinal brush border aminooligopeptidases: Cytosol precursors of the membrane enzyme.Biochemistry 19:2351–2358PubMedGoogle Scholar
  26. 26.
    Mitchell, J.D., Mitchell, J., Peters, T.J. 1974. Enzyme changes in human small bowel during culture in vitro.Gut 15:805–811PubMedGoogle Scholar
  27. 27.
    Mohrmann, I., Mohrmann, M., Biber, J., Murer, H. 1986. Sodium-dependent transport of Pi by an established intestinal epithelial cell line (Caco-2).Am. J. Physiol. 250:G323-G330PubMedGoogle Scholar
  28. 28.
    Moog, F. 1981. Perinatal development of the enzymes of the brush border membrane.In: Textbook of Gastroenterology and Nutrition in Infancy. E. Lebenthal, editor. pp. 139–147. Raven, New YorkGoogle Scholar
  29. 29.
    Naftalin, L., Sexton, M., Whitaker, J.F., Randall, R.J. 1969. A routine procedure for estimating serum γ-glutamyltranspeptidase activity.Clin. Chim. Acta 26:293–296PubMedGoogle Scholar
  30. 30.
    Noren, O., Sjostrom, H., Danielsen, E.M., Cowell, G.M., Skovbjerg, H. 1986. The enzymes of the enterocyte plasma membrane.In: Molecular and Cellular Basis of Digestion, P. Desnuelle, H. Sjostrom, and O. Noren, editors. pp. 335–365. Elsevier Science Publishers, Amsterdam, New York, OxfordGoogle Scholar
  31. 31.
    Pinto, M., Robine-Leon, S., Appay, M.D., Kedinger, M., Triadou, N., Dussaulx., E., Lacroix, B., Simon-Assman, P., Haffen, K., Fogh, J., Zweibaum, A. 1983. Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture.Biol. Cell 47:323–330Google Scholar
  32. 32.
    Post, R.A., Sen, A.K. 1967. Sodium and potassium stimulated ATPase.Meth. Enzymol. 10:762–768Google Scholar
  33. 33.
    Potter, G.D., Burlingame, S.M. 1986. Glucose-coupled sodium absorption in the developing rat colon.Am. J. Physiol. 250:G221-G226PubMedGoogle Scholar
  34. 34.
    Puigserver, A., Wicker, C., Gaucher, C. 1986. Adaptation of pancreatic and intestinal hydrolases to dietary changes.In: Molecular and Cellular Basis of Digestion. P. Desnuelle, H. Sjostrom, and O. Noren, editors. pp. 113–124. Elsevier Science Publishers, Amsterdam, New York, OxfordGoogle Scholar
  35. 35.
    Ramond, M.J., Martinot-Peignoux, M., Erlinger, S. 1985. Dome formation in the human colon carcinoma cell line Caco-2 in culture. Influence of ouabain and permeable supports.Biol. Cell. 54:89–92PubMedGoogle Scholar
  36. 36.
    Rousset, M. 1986. The human colon carcinoma cell lines HT-29 and Caco-2: Two in vitro models for the study of intestinal differentiation.Biochimie 68:1035–1040PubMedGoogle Scholar
  37. 37.
    Rousset, M., Laburthe, M., Pinto, M., Chevalier, G., Rouyer-Fessard, C., Dussaulx, E., Trugnan, G., Boige, N., Brun, J.L., Zweibaum, A. 1985. Enterocytic differentiation and glucose utilization in the human colon tumor cell line Caco-2: Modulation by forskolin.J. Cell. Physiol. 123:377–385PubMedGoogle Scholar
  38. 38.
    Schmitz, J., Preiser, H., Maestracci, D., Ghosh, B.K., Cerda, J.J., Crane, R.K. 1973. Purification of the human intestinal brush border membrane.Biochim. Biophys. Acta 323:98–112PubMedGoogle Scholar
  39. 39.
    Seetharam, B., Yeh, K.Y., Moog, F., Alpers, D.H. 1977. Development of intestinal brush border membrane proteins in the rat.Biochim. Biophys. Acta 470:424–436PubMedGoogle Scholar
  40. 40.
    Semenza, G., Kessler, M., Hosang, M., Weber, J., Schmidt, U. 1984. Biochemistry of the Na+,d-glucose cotransporter of the small intestinal brush-border membrane. The state of the art in 1984.Biochim. Biophys. Acta 779:343–379PubMedGoogle Scholar
  41. 41.
    Yamada, K., Moriuchi, S., Hosoya, N. 1979. Some characteristics of early appearing isomaltase in intestinal mucosa of suckling rat.J. Nutr. Sci. Vitaminol. 24:177–184Google Scholar
  42. 42.
    Yokota, K., Nishi, Y., Takesue, Y. 1983. Effect of phloretin on Na-dependentd-glucose uptake by intestinal brush border membrane vesicles.Biochem. Pharmacol. 32:3453–3457PubMedGoogle Scholar
  43. 43.
    Zweibaum, A., Triadou, N., Kedinger, M., Augeron, C., Robine-Leon, S., Pinto, M., Rousset, M., Haffen, K. 1983. Sucrase-isomaltase: A marker of foetal and malignant epithelial cells of the human colon.Int. J. Cancer 32:407–412PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • Anne Blais
    • 1
  • Pierre Bissonnette
    • 1
  • Alfred Berteloot
    • 1
  1. 1.Membrane Transport Research Group, Department of Physiology, Faculty of MedicineUniversity of MontrealMontrealCanada

Personalised recommendations