Skip to main content
Log in

Ba2+-inhibitable86Rb+ fluxes across membranes of vesicles from toad urinary bladder

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

86Rb+ fluxes have been measured in suspensions of vesicles prepared from the epithelium of toad urinary bladder. A readily measurable barium-sensitive, ouabain-insensitive component has been identified; the concentration of external Ba2+ required for half-maximal inhibition was 0.6mm. The effects of externally added cations on86Rb+ influx and efflux have established that this pathway is conductive, with a selectivity for K+, Rb+ and Cs+ over Na+ and Li+. the Rb+ uptake is inversely dependent on external pH, but not significantly affected by internal Ca2+ or external amiloride, quinine, quinidine or lidocaine. It is likely, albeit not yet certain, that the conductive Rb+ pathway is incorporated in basolateral vesicles oriented right-side-out. It is also not yet clear whether this pathway comprises the principle basolateral K+ channel in vivo, and that its properties have been unchanged during the preparative procedures. Subject to these caveats, the data suggest that the inhibition by quinidine of Na+ transport across toad bladder does not arise primarily from membrane depolarization produced by a direct blockage of the basolateral channels. It now seems more likely that the quinidine-induced elevation of intracellular Ca2+ activity directly blocks apical Na+ entry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramcheck, F.J. 1984. Mechanism of inhibition of transepithelial sodium transport in frog skin by quinine and quinidine. Ph.D. Thesis. University of Illinois, Urbana, Illinois

    Google Scholar 

  • Armstrong, C.M., Taylor, S.R. 1980. Interaction of barium ions with potassium channels in squid giant axons.Biophys. J. 30:473–488

    PubMed  Google Scholar 

  • Arruda, J.A.L., Sabatini, S. 1980. Effect of quinidine on Na, H+, and water transport by the turtle and toad bladders.J. Membrane Biol. 55:141–147

    Google Scholar 

  • Balzer, H. 1972. The effect of quinidine and drugs with quinidine-like actions (propranolol, verapamil and tetracaine) on the calcium transport system in isolated sarcoplasmic reticulum vesicles of rabbit skeletal muscle.Naunyn-Schmiedeberg's Arch. Pharmacol. 274:256–272

    Google Scholar 

  • Batra, S. 1974. The effects of drugs on calcium uptake and calcium release by mitochondria and sarcoplasmic reticulum of frog skeletal muscle.Biochem. Pharmacol. 23:89–101

    PubMed  Google Scholar 

  • Beck, J.C., Sacktor, B. 1975. Energetics of the Na+-dependent transport ofd-glucose in renal brush border membrane vesicles.J. Biol. Chem. 250:8674–8680

    Google Scholar 

  • Benos, D.J., Hyde, B.A., Latorre, R. 1983. Sodium flux ratio through the amiloride-sensitive entry pathway in frog skin.J. Gen. Physiol. 76:233–247

    Google Scholar 

  • Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72:248–254

    PubMed  Google Scholar 

  • Bregestovski, P., Redkozubov, A., Alexeev, A. 1986. Elevation of intracellular calcium reduces voltage-dependent potassium conductance in human T cells.Nature (London) 319:776–778

    Google Scholar 

  • Carvalho, A.P. 1968. Calcium-binding properties of sarcoplasmic reticulum as influenced by ATP, caffeine, quinine, and local anesthetics.J. Gen. Physiol. 52:622–641

    PubMed  Google Scholar 

  • Chase, H.S., Al-Awqati, Q. 1983. Calcium reduces the sodium permeability of luminal membrane vesicles from toad bladder: Studies using a fast-reaction aparatus.J. Gen. Physiol. 31:643–665

    Google Scholar 

  • Civan, M.M. 1986. NMR study of epithelia.Biomed. Res. 7 (Suppl. 2):1–11

    Google Scholar 

  • DeLong, J., Civan, M.M. 1983. Microelectrode study of K+ accumulation by tight epithelia: I. Baseline values of split frog skin and toad urinary bladder.J. Membrane Biol. 72:183–193

    Google Scholar 

  • Eaton, D.C., Brodwick, M.S. 1980. Effects of barium on the potassium conductance of squid giant axon.J. Gen. Physiol. 75:727–750

    PubMed  Google Scholar 

  • Friedman, P.A., Figueirido, J.F., Maack, T., Windhager, E.E. 1981. Sodium-calcium interactions in the renal proximal tubule of the rabbit.Am. J. Physiol. 240:F558-F568

    Google Scholar 

  • Frindt, G., Windhager, E.E. 1983. Effect of quinidine, low peritubular [Na] or [Ca] on Na transport in isolated perfused rabbit cortical collecting tubules.Fed. Proc. 42:305

    Google Scholar 

  • Garty, H. 1984. Amiloride blockable sodium fluxes in toad bladder membrane vesicles.J. Membrane Biol. 82:269–279

    Google Scholar 

  • Garty, H., Asher, C. 1985. Ca2+-dependent, temperature-sensitive regulation of Na+ channels in tight epithelia.J. Biol. Chem. 260:8330–8335

    PubMed  Google Scholar 

  • Garty, H., Asher, C. 1986. Ca2+ induced down regulation of Na+ channels in toad bladder epithelium.J. Biol. Chem. 261:7400–7406

    PubMed  Google Scholar 

  • Garty, H., Asher, C., Yeger, O. 1987. Direct inhibition of epithelial Na+ channels by a pH-dependent interaction with calcium, and by other divalent cations.J. Membrane Biol. 95:151–162

    Google Scholar 

  • Garty, H., Civan, E.D., Civan, M.M. 1985. Effects of internal and external pH on amiloride-blockable Na+ transport across toad urinary bladder vesicles.J. Membrane Biol. 87:67–75

    Google Scholar 

  • Garty, H., Rudy, B., Karlish, S.J.D. 1983. A simple and sensitive procedure for measuring isotope fluxes through ion-specific channels in heterogeneous populations of membrane vesicles.J. Biol. Chem. 258:13094–13099

    PubMed  Google Scholar 

  • Germann, W.J., Ernst, S.A., Dawson, D.C., 1986a. Resting and osmotically induced basolateral K conductances in turtle colon.J. Gen. Physiol. 88:253–274

    PubMed  Google Scholar 

  • Germann, W.J., Lowy, M.E., Ernst, S.A., Dawson, D.C. 1986b. Differentiation of two distinct K conductances in the basolateral membrane of turtle colon.J. Gen. Physiol. 88:237–251

    PubMed  Google Scholar 

  • Helfferich, F. 1962. Ion Exchange. p. 308. McGraw-Hill, New York

    Google Scholar 

  • Hermann, A., Gorman, A.L.F. 1984. Action of quinidine on ionic currents of moluscan pacemaker neurons.J. Gen. Physiol. 83:919–940

    PubMed  Google Scholar 

  • Hille, B. 1984. Ionic Channels of Excitable Membranes. p. 68. Sinauer Associates, Sunderland, Mass.

    Google Scholar 

  • Hunter, H., Lopes, A.G., Boulpaep, E.L., Giebisch, G.H. 1984. Single channel recordings of calcium-activated potassium channels in the apical membrane of rabbit cortical collecting tubules.Proc. Natl. Acad. Sci. USA 81:4237–4239

    Google Scholar 

  • Isaacson, A., Sandow, A. 1967. Quinine and caffeine effects on45Ca movements in frog sartorius muscle.J. Gen. Physiol. 50:2109–2128

    PubMed  Google Scholar 

  • Karlish, S.J.D., Stein, W.D. 1982. Passive rubidium fluxes mediated by Na-K-ATPase reconstituted into phospholipid vesicles when ATP- and phosphate-free.J. Physiol. (London) 328:295–316

    Google Scholar 

  • Kenney, L.J., Kaplan, J.H. 1985. Arsenate repalces phosphate in ADP-dependent and ADP-independent Rb+−Rb+ exchange mediated by the red cell sodium pump.In: The Sodium Pump. I.H. Glynn and J.C. Ellory, editors. pp. 535–539. The Company of Biologists Limited, Cambridge

    Google Scholar 

  • Kirk, K., Dawson, D.C. 1983. Basolateral potassium channel in turtle colon: Evidence for single-file ion flow.J. Gen. Physiol. 82:297–313

    PubMed  Google Scholar 

  • Koefoed-Johnsen, V., Ussing, H.H. 1958. The nature of the frog skin potential.Acta Physiol. Scand. 42:298–308

    PubMed  Google Scholar 

  • Latorre, R., Miller, C. 1983. Conduction and selectivity in potassium channels.J. Membrane Biol. 71:11–30

    Google Scholar 

  • Leb, D.E., Hoshiko, T., Lindley, B.D. 1965. Effects of alkali metal cations on the potential across toad and bullfrog urinary bladder.J. Gen. Physiol. 48:527–540

    PubMed  Google Scholar 

  • Lewis, S.A., Eaton, D.C., Diamond, J.M. 1976. The mechanism of Na+ transport by rabbit urinary bladder.J. Membrane Biol. 28:41–70

    Google Scholar 

  • Lichtenstein, N.S., Leaf, A. 1965. Effect of amphotericin B on the permeability of the toad bladder.J. Clin. Invest. 44:1328–1342

    PubMed  Google Scholar 

  • Lindemann, B., Van Driessche, W. 1977. Sodium-specific membrane channels of frog skin are pores: Current fluctuations reveal high turnover.Science 195:292–294

    PubMed  Google Scholar 

  • Lorenzen, M., Lee, C.O., Windhager, E.E. 1984. Cytosolic Ca2+ and Na+ activities in perfused proximal tubule ofNecturus kidney.Am. J. Physiol. 247:F93-F102

    PubMed  Google Scholar 

  • Nagel, W. 1979. Inhibition of potassium conductance by barium in frog skin epithelium.Biochim. Biophys. Acta 552:346–357

    PubMed  Google Scholar 

  • Nielsen, R. 1979. A 3 to 2 coupling of the Na−K pump responsible for the transepithelial Na transport in frog skin disclosed by the effect of Ba.Acta Physiol. Scand. 107:189–191

    PubMed  Google Scholar 

  • Palmer, L.G. 1982. Ion selectivity of the apical membrane Na channel in the toad urinary bladder.J. Membrane Biol. 67:91–98

    Google Scholar 

  • Petersen, O.H., Maruyama, Y. 1984. Calcium-activated potassium channels and their role in secretion.Nature (London) 307:693–696

    Google Scholar 

  • Rae, J.L. 1985. The application of patch clamp methods to ocular epithelia.Curr. Eye Res. 4:409–420

    PubMed  Google Scholar 

  • Richards, N.W., Dawson, D.C. 1985a. Single channel currents recorded from isolated turtle colon epithelial cells.Biophys. J. 47:444a

    Google Scholar 

  • Richards, N.W., Dawson, D.C. 1985b. Reversible blockade of single-channel currents by lidocaine in isolated turtle colon epithelial cells.Fed. Proc. 44:1745

    Google Scholar 

  • Richards, N.W., Dawson, D.C. 1986. Single K channels in isolated turtle colon epithelial cells.Am. J. Physiol. 251:C85-C89

    PubMed  Google Scholar 

  • Robinson, B.A., Macknight, A.D.C. 1976a. Relationships between serosal medium potassium concentration and sodium transport in toad urinary bladder: I. Effects of different medium potassium concentrations on electrical parameters.J. Membrane Biol. 26:217–238

    Google Scholar 

  • Robinson, B.A., Macknight, A.D.C. 1976b. Relationships between serosal medium potassium concentration and sodium transport in toad urinary bladder: III. Exchangeability of epithelial cellular potassium.J. Membrane Biol. 26:269–286

    Google Scholar 

  • Sperelakis, N., Schneider, M.F., Harris, E.J. 1967. Decreased K conductance produced by Ba in frog sartorium fibers.J. Gen. Physiol. 50:1565–1583

    PubMed  Google Scholar 

  • Standen, N.B., Stanfield, D.R. 1978. A potential- and time-dependent blockade of inward rectification in frog skeletal muscle fibres by barium and strontium ions.J. Physiol. (London) 280:169–191

    Google Scholar 

  • Taylor, A., Eich, E., Pearl, M., Brem, A. 1979. Role of cytosolic calcium and Na−Ca exchange in the action of vasopressin.In: Ion Transport by Epithelia. J. Bourguet J. Chevalier, M. Parisi and P. Ripoche, editors. pp. 167–174. INSERM, Paris

    Google Scholar 

  • Van Driessche, W. 1987. Lidocaine blockage of basolateral potassium channels in the amphibian urinary bladder.J. Physiol. (London) (in press)

  • Van Driessche, W., Hillyard, S.D. 1985. Quinidine blockage of K+ channels in the basolateral membrane of larval bullfrog skin.Pfluegers Arch. 405:S77-S82

    Google Scholar 

  • Van Driessche, W., Zeiske, W. 1980. Ba2+-induced conductance fluctuations of spontaneously fluctuating K+ channels in the apical membrane of frog skin (Rana temporaria).J. Membrane Biol. 56:31–42

    Google Scholar 

  • Yantorno, R.E., Civan, M.M. 1986. Single channel currents in basolateral membrane of isolated frog skin epithelium.Biophys. J. 49:160a

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garty, H., Civan, M.M. Ba2+-inhibitable86Rb+ fluxes across membranes of vesicles from toad urinary bladder. J. Membrain Biol. 99, 93–101 (1987). https://doi.org/10.1007/BF01871229

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871229

Key words

Navigation