Skip to main content
Log in

Distribution of calcium ATPase in the sarcoplasmic reticulum of fast- and slow-twitch muscles determined with monoclonal antibodies

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Four monoclonal antibodies against the calcium ATPase in sarcoplasmic reticulum (SR) of rabbit fast-twitch skeletal muscle were characterized using SDS-PAGE, Western blots and immunofluorescence. The ultrastructural distribution of the antigens was determined using post-embedding immunolabeling. The antibodies recognized the calcium ATPase in the SR but not in transverse (T-) tubule or plasma membranes. The antibody, D12, had the same binding affinity for the calcium ATPase from fast-twitch (rabbit sternomastoid) and slow-twitch (rabbit soleus) fibers and the affinity fell by 30% after fixation for electron microscopy in both types of muscle fiber. Ultrastructural studies revealed that the density of D12 antibody binding to the terminal cisternae membrane of extensor digitorum longus (edl) and sternomastoid fibers was on average seven times greater than in the slow-twitch soleus and semimembranosus fibers. Since the affinity of the ATPase for the antibody was the same in SR from fast- and slow-twitch muscles, the concentration of calcium ATPase in the terminal cisternae membrane of fast-twitch fibers was seven times greater than in slow-twitch fibers. This conclusion was supported by the fact that the concentration of calcium ATPase in light SR membranes was six times greater in SR from fast-twitch fibers than in SR from slow-twitch fibers. The results provide strong evidence that the different calcium accumulation rates in mammalian fast- and slow-twitch muscles are due to different concentrations of calcium ATPase molecules in the SR membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banyard, M.R.C. 1984. A comparison of the expression of the DIDS-binding proteins from normal and tumorigenic human cells.Br. J. Cancer,50:809–814

    PubMed  Google Scholar 

  • Beringer, T. 1976. A freeze-fracture study of sarcoplasmic reticulum from fast and slow muscle of the mouse.Anat. Rec. 184:647–664

    PubMed  Google Scholar 

  • Bers, G., Garfin, D. 1985. Protein and nucleic acid blotting and immunochemical detection.Biotechniques 3:276–288

    Google Scholar 

  • Bray, D.F., Rayns, D.G. 1976. A comparative freeze-etch study of the sarcoplasmic reticulum of avian fast and slow muscle fibres.J. Ultrastruct. Res. 57:251–259

    PubMed  Google Scholar 

  • Close, R. 1972. Dynamic properties of mammalian skeletal muscle.Physiol. Rev. 52:129–197

    PubMed  Google Scholar 

  • Damiani, E., Betto, R., Salvatiori, S., Volpe, P., Salviati, G., Margreth, A. 1981. Polymorphism of sarcoplasmic-reticulum adenosine triphosphatase of rabbit skeletal muscle.Biochem. J. 197:245–248

    PubMed  Google Scholar 

  • Davey, D.F., Wong, S.Y.P. 1980. Morphometric analysis of rat extensor digitorum longus and soleus muscles.Aust. J. Exp. Biol. Med. Sci. 58:393–404

    Google Scholar 

  • DeFoor, P.H., Levitsky, D., Biryukova, T., Fleischer, S. 1980. Immunological dissimilarity of the calcium pump protein of skeletal and cardiac muscle sarcoplasmic reticulum.Arch. Biochem. Biophys. 200:196–205

    PubMed  Google Scholar 

  • Dulhunty, A.F., Dlutowski, M. 1979. Fibre types in red and white segments of rat sternomastoid muscle.Am. J. Anat. 156:51–62

    PubMed  Google Scholar 

  • Dulhunty, A.F., Gage, P.W. 1985. Excitation-contraction coupling and charge movement in denervated rat extensor digitorum longus and soleus muscles.J. Physiol. (London) 358:75–89

    Google Scholar 

  • Dulhunty, A.F., Gage, P.W., Lamb, G.D. 1986. Differential effects of thyroid hormone on T-tubules and terminal cisternae in rat muscles: An electrophysiological and morphometric analysis.J. Mus. Res. Cell. Motil. 7:225–236

    Google Scholar 

  • Dulhunty, A.F., Valois, A.A. 1983. Indentations in the terminal cisternae of amphibian and mammalian skeletal muscle fibres.J. Ultrastruct. Res. 84:34–49

    PubMed  Google Scholar 

  • Dux, L., Martonosi, A. 1984. Membrane crystals of Ca2+-ATPase in sarcoplasmic reticulum of fast and slow skeletal and cardiac muscles.Eur. J. Biochem. 141:43–49

    PubMed  Google Scholar 

  • Eisenberg, B.R. 1983. Quantitative ultrastructure of mammalian skeletal muscle.In: Handbook of Physiology. L.D. Peachey and R.H. Adrian, editors. pp. 73–112. American Physiology Society, Washington, D.C.

    Google Scholar 

  • Eisenberg, B.R., Kuda, A.M. 1976. Discrimination between fibre populations in mammalian skeletal muscle by using ultrastructural parameters.J. Ultrastruct. Res. 54:76–88

    PubMed  Google Scholar 

  • Franzini-Armstrong, C.F. 1975. Membrane particles and transmission at the triad.Fed. Proc. 34:1382–1389

    PubMed  Google Scholar 

  • Heilmann, C., Brdiczka, D., Nickel, E., Pette, D. 1977. ATPase activities, Ca2+ transport and phosphoprotein formation in sarcoplasmic reticulum subfraction of fast and slow rabbit muscles.Eur. J. Biochem. 81:211–222

    PubMed  Google Scholar 

  • Heilmann, C., Müller, W., Pette, D. 1981. Correlation between ultrastructural and functional changes in sarcoplasmic reticulum during chronic stimulation of fast muscle.J. Membrane Biol. 59:143–149

    Google Scholar 

  • Hidalgo, C., Gonzalez, M.E., Lagos, R. 1983. Characterization of the Ca2+- or Mg2+-ATPase of transverse tubule membranes isolated from rabbit skeletal muscle.J. Biol. Chem. 258:13937–13945

    PubMed  Google Scholar 

  • Jorgensen, A.D., Campbell, K.P. 1986. Monoclonal antibody to the Ca2++Mg2+-dependent ATPase of cardiac sarcoplasmic reticulum (SR) crossreacts with type I (slow) but not type II (fast) skeletal muscle.Biophys. J. 49:589P

    Google Scholar 

  • Jorgensen, A.D., Kalnins, V., MacLennan, D.H. 1979. Localization of sarcoplasmic reticulum proteins in rat skeletal muscle by immunofluorescence.J. Cell. Biol. 80:372–384

    PubMed  Google Scholar 

  • Jorgensen, A.D., Shen, A.C.Y., MacLennan D.H., Tokuyasu, K.T. 1982. Ultrastructural localization of the Ca2++Mg2+-dependent ATPase of sarcoplasmic reticulum in rat skeletal muscle by immunoferritin labelling of ultrathin frozen sections.J. Cell Biol. 92:409–416

    PubMed  Google Scholar 

  • Kohler, G., Milstein, C. 1975. Continuous cultures of fused cells secreting antibody of a predefined specificity.Nature (London) 256:495–497

    Google Scholar 

  • Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature (London) 256:495–497

    Google Scholar 

  • Lannergren, J. 1979. An intermediate type of muscle fibre inZenopus laevis.Nature (London) 279:254–256

    Google Scholar 

  • Lannergren, J., Hoh, J.F.Y. 1984. Myosin isoenzymes in single muscle fibres ofXenopus laevis: Analysis of five different functional types.Proc. R. Soc. London B 222:401–408

    Google Scholar 

  • Lannergren, J., Smith, R.S. 1966. Types of muscle fibres in toad skeletal muscle.Acta Physiol. Scand. 68:263–274

    Google Scholar 

  • Maclennan, D.H., Brandl, C.J., Korczac, B., Green, N.M. 1985. Amino-acid sequence of a Ca2++Mg2+-dependent ATP'ase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence.Nature (London) 316:696–700

    Google Scholar 

  • MacLennan, D.H., Seeman, P., Iles, G.H., Yip, C.C. 1971. Membrane formation by the adenosine triphosphatase of sarcoplasmic reticulum.J. Biol. Chem. 246:2702–2710

    PubMed  Google Scholar 

  • Malouf, N., Meissner, G. 1979. Localization of a Mg2+- or Ca2+-activated (“basic”) ATPase in skeletal muscle.Exp. Cell Res. 122:233–250

    PubMed  Google Scholar 

  • Meissner, G., Fleischer, S. 1974. Dissociation and reconstitution of functional sarcoplasmic reticulum vescicles.J. Biol. Chem. 249:302–309

    PubMed  Google Scholar 

  • Mitchell, R.D., Saito, A., Palade, P., Fleischer, S. 1983. Morphology of isolated triads.J. Cell Biol. 96:1017–1029

    PubMed  Google Scholar 

  • Pette, D., Heilman, C. 1979. Some characteristics of sacroplasmic reticulum in fast- and slow-twitch muscles.Biochem. Soc. Trans. 581:765–766

    Google Scholar 

  • Saito, A., Seiler, S., Chris, A., Fleischer, S. 1984. Preparation and morphology of sarcoplasmic reticulum terminal cisternae from rabbit skeletal muscle.J. Cell Biol. 99:875–885

    Google Scholar 

  • Sreter, F.A., Gergely, J. 1964. Comparative studies of the Mg2+-activated ATPase activity and Ca2+-uptake of fractions of white and red muscle homogenates.Biochem. Biophys. Res. Commun. 16:438–443

    PubMed  Google Scholar 

  • Stewart, P.S., MacLennan, D.H. Shamoo, A.E. 1976. Isolation and characterization of tryptic fragments of the adenosine triphosphatase of sarcoplasmic reticulum.J. Biol. Chem. 251:712–719

    PubMed  Google Scholar 

  • Tada, M., Katz, A.M. 1982. Phosphorylation of the sarcoplasmic reticulum and sarcolemma.Annu. Rev. Physiol. 44:401–421

    PubMed  Google Scholar 

  • Tobin, H., Staehelin, T., Gordon, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications.Proc. Natl. Acad. Sci. USA 76:4350–4353

    PubMed  Google Scholar 

  • Volpe, P., Damiani, E., Salviati, G., Margreth, A. 1982. Transitions in membrane composition during postnatal development of rabbit fast muscle.J. Musc. Res. Cell Motil. 3:213–230

    Google Scholar 

  • Wendt, I.R., Gibbs, C.L. 1973. Energy production in rat extensor digitorum longus muscle.Am. J. Physiol. 224:1081–1086

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dulhunty, A.F., Banyard, M.R.C. & Medveczky, C.J. Distribution of calcium ATPase in the sarcoplasmic reticulum of fast- and slow-twitch muscles determined with monoclonal antibodies. J. Membrain Biol. 99, 79–92 (1987). https://doi.org/10.1007/BF01871228

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871228

Key words

Navigation