The Journal of Membrane Biology

, Volume 98, Issue 3, pp 223–236 | Cite as

Collagen receptors mediate early events in the attachment of epithelial (MDCK) cells

  • Pedro J. I. Salas
  • Dora E. Vega-Salas
  • Enrique Rodriguez-Boulan


Madin-Darby canine kidney (MDCK) cells kept in suspension culture for 12–15 hr displayed high-affinity binding sites for125I-lathyritic (soluble) collagen (120,000/cell,K D =30nm) and preferred collagens types I and IV over laminin or fibronectin as substrates during the first hour of attachment. On the other hand, after 4 hr, attachment to all four substrates was equally efficient. Upon challenge with a collagen substrate, the high-affinity sites were rapidly recruited on it (T1/2=6 min). Their occupancy by soluble collagen triggered the exocytosis of a second large population of low-affinity collagen binding sites that included laminin and seems to be involved in a second cell-attachment mechanism. These results are compatible with a twostep model of MDCK cell attachment to the substrate: first, via high-affinity collagen binding sites, and second, via laminin of cellular origin.

Key Words

epithelia MDCK cells cell-substrate interaction collagen receptor epithelial polarity laminin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balcarova-Stander, J., Pfeiffer, S.E., Fuller, S.D., Simons, K. 1984. Development of cell surface polarity in the epithelial Madin-Darby canine kidney (MDCK) cell line.EMBO J. 3:2687–2694PubMedGoogle Scholar
  2. Barrow, M.V., Simpson, C.F., Miller, E.J. 1974. Lathyrism: A review.Q. Rev. Biol. 49:101–128CrossRefPubMedGoogle Scholar
  3. Bernfield, M.R., Banerjee, S.D. 1978. The basal lamina in epithelial-mesenchymal morphogenetic interactions.In: Biology and Chemistry of Basement Membranes. N.A. Kefalides, editor. pp. 137–148. Academic, New YorkGoogle Scholar
  4. Carlin, B.E., Durkin, M.E., Bender, B., Jaffe, R., Chung, A.E. 1983. Synthesis of laminin and entactin by F9 cells induced with retinoic acid and dibutyryl cyclic AMP.J. Biol. Chem. 258:7729–7737PubMedGoogle Scholar
  5. Cereijido, M., Robbins, E.S., Dolan, W.J., Rotunno, C.A., Sabatini, D.D. 1978. Polarized monolayers formed by epithelial cells on a permeable and translucent support.J. Cell. Biol. 77:853–880PubMedGoogle Scholar
  6. Chambard, M.J., Gabrion, J., Mauchamp, J. 1981. Influence of collagen gel on the orientation of epithelial cell polarity: Follicle formation from isolated thyroid cells and from preformed monolayers.J. Cell Biol. 91:157–167CrossRefPubMedGoogle Scholar
  7. Chambard, M., Verrier, B., Gabrion, J., Mauchamp, J. 1984. Polarity reversal of inside-out thyroid follicles cultured within collagen gel: Reexpression of specific functions.Biol. Cell 51:315–325.PubMedGoogle Scholar
  8. Charonis, A.S., Tsilibary, E.C., Yurchenco, P.D., Furthmayr, H. 1985. Binding of laminin to type IV collagen: A morphological study.J. Cell Biol. 100:1848–1853CrossRefPubMedGoogle Scholar
  9. Chiang, T.M., Postlethwaite, A.E., Beachey, E.H., Seyer, J.M., Kang, A.H. 1978. Binding of chemotactic collagen-derived peptides to fibroblasts.J. Clin. Invest. 62:916–922PubMedGoogle Scholar
  10. Enat, R., Jefferson, D.M., Ruiz-Opazo, N., Gatmaitan, Z., Leinward, L.A., Reid, L. 1984. Hepatocyte proliferation in vitro: Its dependence on the use of serum-free hormonally defined medium and substrata of extracellular matrix.Proc. Natl. Acad. Sci. USA 81:1411–1415PubMedGoogle Scholar
  11. Gatmaitan, Z., Jefferson, D.M., Ruiz-Opazo, N., Biempica, L., Arias, I.M., Dudas, G., Leinwand, L.A., Reid, L. 1983. Regulation of growth and differentiation of a rat hepatoma cell line by the synergistic interactions of hormones and collagenous substrata.J. Cell Biol. 97:1179–1190CrossRefPubMedGoogle Scholar
  12. Goldberg, B. 1979. Binding of soluble type I collagen molecules to the fibroblast plasma membrane.Cell 16:265–275PubMedGoogle Scholar
  13. Goldberg, B.D. 1982. Binding of soluble type I collagen to fibroblasts: Effects of thermal activation of ligand, ligand concentration, pinocytosis, and cytoskeletal modifiers.J. Cell Biol. 95:754–751Google Scholar
  14. Goldberg, B.D., Burgeson, R.E. 1982. Binding of soluble type I collagen to fibroblasts: Specificities for native collagen types, triple helical structure, telopeptides, propeptides, and cyanogen bromide-derived peptides.J. Cell Biol. 95:752–756PubMedGoogle Scholar
  15. Greenwood, F.C., Hunter, W.M., Glover, S.J. 1963. The preparation of125I-labeled human growth hormone of high specific radioactivity.Biochem. J. 89:114–123PubMedGoogle Scholar
  16. Grinnell, F. 1978. Cellular adhesiveness and extracellular substrata.Int. Rev. Cytol. 53:65–144PubMedGoogle Scholar
  17. Hall, H.G., Farson, J.A., Bissell, M.S. 1982. Lumen formation by epithelial cell lines in response to collagen overlay: A morphogenetic model in culture.Proc. Natl. Acad. Sci. USA 79:4672–4676PubMedGoogle Scholar
  18. Handler, J.S., Perkins, F.M., Johnson, J.P. 1980. Studies of renal function using cell culture techniques.Am. J. Physiol. 238:F1-F9Google Scholar
  19. Herzlinger, D.A., Ojakian, G.K. 1984. Studies on the development and maintenance of epithelial cell surface polarity with monoclonal antibodies.J. Cell Biol. 93:269–277Google Scholar
  20. Horwitz, A., Duggan, K., Greggs, R., Decker, C., Buck, C. 1985. The cell substrate attachment (CSAT) antigen has properties of a receptor for laminin and fibronectin.J. Cell Biol. 101:2134–2144PubMedGoogle Scholar
  21. Ingber, D.E., Madri, J.A., Jamieson, J.D. 1986. Basement membrane as a spatial organizer of polarized epithelia.Am. J. Pathol. 122:129–139PubMedGoogle Scholar
  22. Johannsson, S., Kjellen, L., Hook, M., Timpl, R. 1981. Substrate adhesion of rat hepatocytes: A comparison of laminin and fibronectin as attachment proteins.J. Cell Biol. 90:260–264PubMedGoogle Scholar
  23. Kabat, D., Gliniak, B., Rohrschneider, L., Polonoff, E. 1985. Cell anchorage determines whether mammary tumor virus glycoproteins are processed for plasma membrane or secretion.J. Cell Biol. 101:2274–2283PubMedGoogle Scholar
  24. Kleinman, H.K., Klebe, R.J., Martin, G.R. 1981. Role of collagenous matrices in the adhesion and growth of cells.J. Cell Biol. 88:473–485PubMedGoogle Scholar
  25. Koda, J.E., Rapraeger, A., Bernfield, M. 1985. Heparan sulfate proteoglycans from mouse mammary epithelial cells. Cell surface proteoglycan as a receptor for interstitial collagens.J. Biol. Chem. 260:8157–8162PubMedGoogle Scholar
  26. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of bacteriophage T4.Nature (London) 227:680–685Google Scholar
  27. Lee, E.Y.H., Lee, W.H., Kaetzel, C.S., Parry, G., Bissell, M. 1985. Interaction of mouse mammary epithelial cells with collagen substrata: Regulation of casein gene expression and secretion.Proc. Natl. Acad. Sci. USA 82:1419–1423PubMedGoogle Scholar
  28. Leighton, J., Brada, Z., Estes, L.W., Justh, G. 1969. Secretory activity and oncogenicity of a cell line derived from canine kidney.Science 162:472–473Google Scholar
  29. Lesot, H.U., Kuhl, U., Mark, K. von der 1982. Isolation of a laminin-binding protein from muscle cell membranes.EMBO J. 2:861–865Google Scholar
  30. Lowther, D.A. 1963. Chemical aspects of collagen fibrillogenesis.Int. Rev. Connect. Tissue Res. 1:63–125Google Scholar
  31. Malinoff, H.L., Wicha, M.S. 1983. Isolation of a cell surface receptor protein for laminin from murine fibrosarcoma cells.J. Cell Biol. 96:1475–1479PubMedGoogle Scholar
  32. Matlin, K.S., Simons, K. 1984. Sorting of an apical plasma membrane glycoprotein occurs before it reaches the surface in cultured epithelial cells.J. Cell Biol. 99:2131–2139Google Scholar
  33. Misek, D.E., Bard, E., Rodriguez-Boulan, E. 1984. Biogenesis of epithelial cell polarity: Intracellular sorting and vectorial exocytosis of an apical plasma membrane glycoprotein.Cell 39:537–546Google Scholar
  34. Misfeldt, D.S., Hamamoto, S.T., Pitelka, D.R. 1976. Transepithelial transport in cell culture.Proc. Natl. Acad. Sci. USA 73:1212–1216PubMedGoogle Scholar
  35. Mollenhauer, J., Bee, J.A., Lizarbe, M.A., Mark, K. von der 1984. Role of Anchorin CII, a 31,000-mol-wt membrane protein, in the interaction of chondrocytes with type II collagen.J. Cell Biol. 98:1572–1578PubMedGoogle Scholar
  36. Mollenhauer, J., Mark, K. von der 1983. Isolation and characterization of a collagen-binding glycoprotein from chondrocyte membranes.EMBO J 2:45–50PubMedGoogle Scholar
  37. Nitsch, L., Wollman, S.H. 1980. Ultrastructure of intermediate stages in polarity reversal of thyroid epithelium in follicules in suspension culture.J. Cell Biol. 86:875–880PubMedGoogle Scholar
  38. Parry, G., Lee, E.Y.H., Farson, D., Koval, M., Bissell, M.J. 1985. Collagenous substrata regulate the nature and distribution of glycosaminoglycans produced by differentiated cultures of mouse mammary epithelial cells.Exp. Cell. Res. 156:487–499PubMedGoogle Scholar
  39. Pfeiffer, S., Fuller, S.D., Simons, K. 1985. Intracellular sorting and basolateral appearance of the G protein of vesicular stomatitis virus in Madin-Darby canine kidney cells.J. Cell Biol. 101:470–476PubMedGoogle Scholar
  40. Pisam, M., Ripoche, P. 1976. Redistribution of surface macromolecules in dissociated epithelial cells.J. Cell Biol. 71:907–920PubMedGoogle Scholar
  41. Rao, C.M., Barsky, S.H., Terranova, V.P., Liotta, L.A. 1983. Isolation of a tumor cell laminin receptor.Biochem. Biophys. Res. Commun. 111:804–808PubMedGoogle Scholar
  42. Rapraeger, A., Jalkanen, M., Endo, E., Koda, J., Bernfield, M. 1985. The cell surface proteoglycan from mouse mammary epithelial cells bears chondroitin sulfate and heparan sulfate glycosaminoglycans.J. Biol. Chem. 260:11046–11052PubMedGoogle Scholar
  43. Reddi, A.H., Sullivan, N.E. 1979. Inhibition of mineralization by experimental lathyrism during matrix-induced endochondral bone differentiation.Proc. Soc. Exp. Biol. Med. 162:445–448PubMedGoogle Scholar
  44. Rees, D.A. 1969. Structure, conformation, and mechanisms in the formation of polysaccharide gels and networks.Adv. Carbohydrate Chem. Biochem. 24:267–332Google Scholar
  45. Rindler, M.J., Ivanov, I.E., Plesken, H., Sabatini, D.D. 1985. Polarized delivery of viral glycoproteins to the apical and basolateral plasma membranes of Madin-Darby canine kidney cells infected with temperature sensitive viruses.J. Cell Biol. 96:866–874Google Scholar
  46. Rodriguez-Boulan, E. 1983a. Membrane biogenesis, enveloped RNA viruses and epithelial polarity.In: Modern Cell Biology. B. Satir, editor. Vol. 1. pp. 119–170. Alan Liss, New YorkGoogle Scholar
  47. Rodriguez-Boulan, E. 1983b. Polarized budding of viruses from epithelial cells.Methods Enzymol. 98:486–501PubMedGoogle Scholar
  48. Rodriguez-Boulan, E., Paskiet, K.T., Sabatini, D. 1983. Assembly of enveloped viruses in Madin-Darby canine kidney cells: Polarized budding from single attached cells and from clusters of cells in suspension.J. Cell Biol. 96:866–874PubMedGoogle Scholar
  49. Rubin, K., Gullberg, D., Borg, T.K., Obrink, B. 1986. Hepatocyte adhesion to collagen: Isolation of membrane glycoproteins involved in adhesion to collagen.Exp. Cell Res. 164:127–138PubMedGoogle Scholar
  50. Rubin, K., Hook, M., Obrink, B., Timpl, R. 1981. Substrate adhesion of rat hepatocytes: Mechanism of attachment to collagen substrates.Cell 24:463–470PubMedGoogle Scholar
  51. Rubin, K., Oldberg, A., Hook, M., Obrink, B. 1978. Adhesion of rat hepatocytes to collagen.Exp. Cell Res. 117:165–117PubMedGoogle Scholar
  52. Ruoslahti, E., Pierschbacher, M.D. 1986. Arg-Gly-Asp: A versatile cell recognition signal.Cell 44:517–518PubMedGoogle Scholar
  53. Salas, P.J.I., Misek, D.E., Vega-Salas, D.E., Gundersen, D., Cereijido, M., Rodriguez-Boulan, E. 1986. Microtubules and actin microfilaments are not critically involved in the biogenesis of epithelial cell surface polarity.J. Cell Biol. 102:1853–1867PubMedGoogle Scholar
  54. Salas, P.J.I., Moreno, J.H. 1982. Single-file diffusion multi-ion mechanism of permeation in paracellular epithelial channels.J. Membrane Biol. 64:103–112Google Scholar
  55. Schlessinger, J., Koppel, D.E., Axelrod, D., Jacobson, K., Webb, W.W., Elson, E.L. 1976. Lateral transport on cell membranes: Mobility of concanavalin A receptors on myoblasts.Proc. Natl. Acad. Sci. USA 73:2409–2413PubMedGoogle Scholar
  56. Simons, K., Fuller, S.D. 1985. Cell surface polarity in epithelia.Annu. Rev. Cell Biol. 1:243–288PubMedGoogle Scholar
  57. Sugrue, S.P., Hay, E.D. 1981. Response of basal epithelial cell surface and cytoskeleton to solubilized extracellular matrix molecules.J. Cell Biol. 91:45–54PubMedGoogle Scholar
  58. Sugrue, S.P., Hay, E.D. 1982. Interaction of embryonic corneal epithelium with exogenous collagen, laminin and fibronectin: Role of endogenous protein synthesis.Dev. Biol. 92:97–106PubMedGoogle Scholar
  59. Sugrue, S.P., Hay, E.D. 1986. The identification of extracellular matrix binding sites on the basal surface of embryonic corneal epithelium and the effect of ECM binding on epithelial collagen production.J. Cell Biol. 102:1907–1916PubMedGoogle Scholar
  60. Terranova, V.P., Rao, C.N., Kalebic, T., Margulies, I.M., Liotta, L.A. 1983. Laminin receptor on human breast carcinoma cells.Proc. Natl. Acad. Sci. USA 80:444–448PubMedGoogle Scholar
  61. Terranova, V.P., Rohrbach, D.H., Martin, G.R. 1980. Role of laminin in the attachment of PAM 212 (epithelial) cells to basement membrane collagen.Cell 22:719–726PubMedGoogle Scholar
  62. Timpl, R., Rohde, H., Robey, P.G., Rennard, S.I., Foidart, J.-M., Martin, G. 1979. Laminin: A glycoprotein from basement membranes.J. Biol. Chem. 254:9933–9937PubMedGoogle Scholar
  63. Towbin, H., Staehelin, T., Gordon, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications.Proc. Natl. Acad. Sci. USA 76:4350–4354PubMedGoogle Scholar
  64. U, H.S., Evans-Layng, M. 1982. Polar redistribution of Na−K ATPase in aggregating MDCK cells.Exp. Cell Res. 146:192–198Google Scholar
  65. Vega-Salas, D.E., Salas, P.J.I., Gundersen, D., Rodriguez-Boulan, E. 1987a. Formation of the apical pole of epithelial (MDCK) cells: Polarity of an apical protein is independent of tight junctions while segregation of a basolateral marker requires cell-cell interactions.J. Cell Biol. 104:905–916PubMedGoogle Scholar
  66. Vega-Salas, D.E., Salas, P.J.I., Rodriguez-Boulan, E. 1985. Monoclonal antibodies against apical surface antigens of MDCK (epithelial) cells.J. Cell Biol. 101(5):61aGoogle Scholar
  67. Vega-Salas, D.E., Salas, P.J.I., Rodriguez-Boulan, E. 1987b. Modulation of the expression of an apical plasma membrane protein of MDCK (epithelial) cells: Cell-cell interactions control the appearance of a novel intracellular storage compartment.J. Cell Biol. 104:1249–1259PubMedGoogle Scholar
  68. Wicha, M.S., Lowrie, G., Kohn, E., Bagavandoss, P., Mahn, T. 1982. Extracellular matrix promotes mammary epithelial growth and differentiation in vitro.Proc. Natl. Acad. Sci. USA 79:3213–3217PubMedGoogle Scholar
  69. Woodley, D.T., Rao, C.N., Hassell, J.R., Liotta, L.A., Martin, G.R., Kleinman, H.K. 1983. Interactions of basement membrane components.Biochim. Biophys. Acta 761:278–283PubMedGoogle Scholar
  70. Yamada, K.M., Akiyama, S.K., Hasegawa, T., Hasegawa, E., Humphries, M.J., Kennedy, D.W., Nagata, K., Urushihara, H., Olden, K., Chen, W.-T. 1985. Recent advances in research on fibronectin and other cell attachment proteins.J. Cell. Biochem. 28:79–97PubMedGoogle Scholar
  71. Yang, J., Nandi, S. 1983. Growth of cultured cells using collagen as substrate.Int. Rev. Cytol. 81:249–286PubMedGoogle Scholar
  72. Ziomek, C.A., Schulman, S., Edidin, M. 1980. Redistribution of membrane proteins in isolated mouse intestinal cells.J. Cell Biol. 86:849–857PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • Pedro J. I. Salas
    • 1
  • Dora E. Vega-Salas
    • 1
  • Enrique Rodriguez-Boulan
    • 1
  1. 1.Department of Cell Biology and AnatomyCornell University Medical CollegeNew York

Personalised recommendations