The Journal of Membrane Biology

, Volume 53, Issue 1, pp 1–17 | Cite as

Functional heterogeneity of the sarcoplasmic reticulum within sarcomeres of skinned muscle fibers

  • M. M. Sorenson
  • J. P. Reuben
  • A. B. Eastwood
  • M. Orentlicher
  • G. M. Katz


Precipitation of Ca oxalate in the sarcoplasmic reticulum of chemically skinned rabbit psoas fibers caused an increase in light scattering which was proportional to the amount of Ca accumulated per unit fiber volume. The increase in scattering was used to measure net accumulation rates and steady-state Ca capacities of the sarcoplasmic reticulum in single fibers. The data obtained were qualitatively and quantitatively similar to those reported for isolated vesicle preparations.

Under conditions in which Ca was not depleted from the medium, Ca accumulation was linear with time over much of its course. Steady-state capacities were independent of the Ca concentration; uptake rates were half-maximal at 0.5 μm Ca++ and saturated above about 1.0 μm. Both rate and capacity varied with the oxalate concentration, being maximal at oxalate concentrations >=5mm and decreasing in proportion to one another at lower concentrations, with a threshold near 0.25mm. At the lower loads, electron micrographs showed many sarcoplasmic reticulum elements empty of precipitate alongside others that were full, whereas virtually all were filled in maximally loaded fibers. These data indicate that the Ca oxalate capacity of each fiber varies with the number and volume of elements in which Ca oxalate crystals can form at a given oxalate concentration, and that individual regions of the sarcoplasmic reticulum within each sarcomere differ in their ability to support Ca oxalate precipitation. Our working hypothesis is that this range in ability to form Ca oxalate crystals involves differences in ability to accumulate and retain ionized Ca inside the sarcoplasmic reticulum.


Oxalate Sarcoplasmic Reticulum Loaded Fiber Oxalate Concentration Rabbit Psoas 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baskin, R.J., Deamer, D.W. 1969. Comparative ultrastructure and calcium transport in heart and skeletal muscle microsomes.J. Cell Biol. 43:610PubMedGoogle Scholar
  2. 2.
    Beil, F.-U., Chak, D. von, Hasselbach, W., Weber, H.-H. 1977. Competition between oxalate and phosphate during active calcium accumulation by sarcoplasmic vesicles.Z. Naturforsch. 32c:281Google Scholar
  3. 3.
    Bendall, J.R. 1969. Muscles, Molecules and Movement. p. 73. Heinemann Educational Books, LondonGoogle Scholar
  4. 4.
    Briggs, F.N., Poland, J.L., Solaro, R.J. 1977. Relative capabilities of sarcoplasmic reticulum in fast and slow mammalian skeletal muscles.J. Physiol. (London) 266:587Google Scholar
  5. 5.
    Carsten, M.E., Reedy, M.K. 1971. Cardiac sarcoplasmic reticulum: Chemical and electron microscope studies of calcium accumulation.J. Ultrastruct. Res. 35:554PubMedGoogle Scholar
  6. 6.
    Caswell, A.H., Pressman, B.C. 1972. Kinetics of transport of divalent cations across sarcoplasmic reticulum vesicles induced by ionophores.Biochem. Biophys. Res. Commun. 49:292CrossRefPubMedGoogle Scholar
  7. 7.
    Costantin, L.L., Franzini-Armstrong, C., Podolsky, R.J. 1965. Localization of calcium accumulating structures in striated muscle fibers.Science 147:158PubMedGoogle Scholar
  8. 8.
    Costantin, L.L., Podolsky, R.J. 1967. Depolarization of the internal membrane system in the activation of frog skeletal muscle.J. Gen. Physiol. 50:1101CrossRefPubMedGoogle Scholar
  9. 9.
    Costantin, L.L., Podolsky, R.J., Tice, L. 1967. Calcium activation of frog slow muscle fibres.J. Physiol. (London) 188:261Google Scholar
  10. 10.
    Duggan, P.F., Martonosi, A. 1970. Sarcoplasmic reticulum. IX. The permeability of sarcoplasmic reticulum membranes.J. Gen. Physiol. 56:147Google Scholar
  11. 11.
    Eastwood, A.B., Wood, D.S., Bock, K.L., Sorenson, M.M. 1979. Chemically skinned mammalian skeletal muscle. I. The structure of skinned rabbit psoas.Tissue Cell 11:553PubMedGoogle Scholar
  12. 12.
    Eisenberg, B.R., Kuda, A.M. 1975. Stereological analysis of mammalian skeletal muscle. II. White vastus muscle of adult guinea pig.J. Ultrastruct. Res. 51:176PubMedGoogle Scholar
  13. 13.
    Elison, C., Fairhurst, A.S., Howell, J.N., Jenden, D.J. 1965. Calcium uptake in glycerol-extracted rabbit psoas muscle fibers. I. Biochemical properties and conditions for uptake.J. Cell. Comp. Physiol. 65:133Google Scholar
  14. 14.
    Endo, M. 1977. Calcium release from the sarcoplasmic reticulum.Physiol. Rev. 57:71PubMedGoogle Scholar
  15. 15.
    Endo, M., Tanaka, M., Ogawa, Y. 1970. Calcium induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibres.Nature (London) 228:34Google Scholar
  16. 16.
    Fabiato, A., Fabiato, F. 1977. Calcium release from the sarcoplasmic reticulum.Circ. Res. 40:119PubMedGoogle Scholar
  17. 17.
    Fabiato, A., Fabiato, F. 1978. Calcium-induced release of calcium from the sarcoplasmic reticulum of skinned cells from adult human, dog, cat, rabbit, rat and frog hearts and from fetal and new-born rat ventricles.Ann. N.Y. Acad. Sci. 307:491PubMedGoogle Scholar
  18. 18.
    Fairhurst, A.S., Jenden, D.J. 1966. Spectrophotometric monitoring of calcium uptake by skeletal muscle particles.Anal. Biochem. 16:294PubMedGoogle Scholar
  19. 19.
    Ford, L.E., Podolsky, R.J. 1972. Calcium uptake and force development by skinned muscle fibres in EGTA buffered solutions.J. Physiol. (London) 233:1Google Scholar
  20. 20.
    Greaser, M.L., Cassens, R.G., Hoekstra, W.G., Briskey, E.J. 1969. Purification and ultrastructural properties of the calcium accumulating membranes in isolated sarcoplasmic reticulum preparations from skeletal muscle.J. Cell. Physiol. 74:37PubMedGoogle Scholar
  21. 21.
    Gulati, J. 1975. Force-velocity characteristics for calcium-activated mammalian slow-twitch and fast-twitch skeletal fibers from the guinea pig.Proc. Nat. Acad. Sci. USA 73:4693Google Scholar
  22. 22.
    Hasselbach, W. 1964a. Relaxing factor and the relaxation of muscle.Prog. Biophys. Mol. Biol. 14:167Google Scholar
  23. 23.
    Hasselbach, W. 1964b. Relaxation and the sarcotubular calcium pump.Fed. Proc. 23:909PubMedGoogle Scholar
  24. 24.
    Hasselbach, W., Makinose, M. 1961. Die Calciumpumpe der “Erschlaffungsgrana” des Muskels und ihre Abhängigkeit von der ATP-Spaltung.Biochem. Z. 333:518PubMedGoogle Scholar
  25. 25.
    Hasselbach, W., Makinose, M. 1963. Über den Mechanismus des Calciumtransportes durch die Membranen des sarkoplasmatischen Reticulums.Biochem. Z. 339:94PubMedGoogle Scholar
  26. 26.
    Howell, J.N., Jenden, D.J. 1967. T-tubules of skeletal muscle: Morphological alterations which interrupt excitation-contraction coupling.Fed. Proc. 26:553Google Scholar
  27. 27.
    Inesi, G., Scarpa, A. 1972. Fast kinetics of adenosine triphosphate dependent Ca2+ uptake by fragmented sarcoplasmic reticulum.Biochemistry 11:356PubMedGoogle Scholar
  28. 28.
    Julian, F.J. 1971. The effect of calcium on the force-velocity relation of briefly glycerinated frog muscle fibers.J. Physiol. (London) 218:117Google Scholar
  29. 29.
    Katz, A.M., Repke, D.I., Dunnett, J.J., Hasselbach, W. 1977. Dependence of calcium permeability of sarcoplasmic reticulum vesicles on external and internal calcium ion concentrations.J. Biol. Chem. 252:1950PubMedGoogle Scholar
  30. 30.
    Katz, G.M., Sorenson, M., Reuben, J.P. 1978. Filament interaction monitored by light scattering in skinned fibers.J. Gen. Physiol. 72:651PubMedGoogle Scholar
  31. 31.
    Kerrick, W.G.L., Krasner, B. 1975. Disruption of the sarcolemma of mammalian skeletal muscle fibers by homogenization.J. Appl. Physiol. 39:1052PubMedGoogle Scholar
  32. 32.
    Kim, Y.S., Martin, D.F., Padilla, G.M. 1976. Oxalate, calcium uptake, and ATPase activity of sarcoplasmic reticulum vesicles.Bioorg. Chem. 6:329Google Scholar
  33. 33.
    Kitazawa, T. 1976. Physiological significance of Ca uptake by mitochondria in the heart in comparison with that by cardiac sarcoplasmic reticulum.J. Biochem. 80:1129PubMedGoogle Scholar
  34. 34.
    Kometani, T., Kasai, M. 1978. Ionic permeability of sarcoplasmic reticulum vesicles measured by light scattering method.J. Membrane Biol. 41:295Google Scholar
  35. 35.
    Loftfield, R.B., Eigner, E.A. 1960. Scintillation counting of paper chromatograms.Biochem. Biophys. Res. Commun. 3:72Google Scholar
  36. 36.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265PubMedGoogle Scholar
  37. 37.
    Mabuchi, K., Sreter, F.A. 1978. Use of cryostat sections for measurement of Ca2+ uptake by sarcoplasmic reticulum.Anal. Biochem. 86:733PubMedGoogle Scholar
  38. 38.
    MacLennan, D.H., Holland, P.C. 1975. Calcium transport in sarcoplasmic reticulum.Annu. Rev. Biophys. Bioeng. 4:377PubMedGoogle Scholar
  39. 39.
    Makinose, M., Hasselbach, W. 1965. Der Einfluß von Oxalat auf den Calcium-Transport isolierter Vesikel des sarkoplasmatischen Reticulum.Biochem. Z. 343:360PubMedGoogle Scholar
  40. 40.
    Makinose, M., The, R. 1965. Calcium-Akkumulation und Nucleosidtriphosphat-Spaltung durch die Vesikel des sarkoplasmatischen Reticulum.Biochem. Z. 343:383PubMedGoogle Scholar
  41. 41.
    Martonosi, A. 1972. Biochemical and clinical aspects of sarcoplasmic reticulum function.Curr. Top. Membr. Transp. 3:83Google Scholar
  42. 42.
    Martonosi, A., Feretos, R. 1964a. Sarcoplasmic reticulum. I. The uptake of Ca++ by sarcoplasmic reticulum fragments.J. Biol. Chem. 239:648PubMedGoogle Scholar
  43. 43.
    Martonosi, A., Feretos, R. 1964b. Sarcoplasmic reticulum. II. Correlation between adenosine triphosphatase activity and Ca++ uptake.J. Biol. Chem. 239:659PubMedGoogle Scholar
  44. 44.
    McFarland, B.H., Inesi, G. 1970. Solubilization of sarcoplasmic reticulum with Triton X-100.Arch. Biochem. Biophys. 145:456Google Scholar
  45. 45.
    Meissner, G. 1975. Isolation and characterization of two types of sarcoplasmic reticulum vesicles.Biochim. Biophys. Acta 389:51PubMedGoogle Scholar
  46. 46.
    Mobley, B.A., Eisenberg, B. 1975. Sizes of components in frog skeletal muscle measured by methods of stereology.J. Gen. Physiol. 66:31Google Scholar
  47. 47.
    Natori, R. 1954. The property and contraction process of isolated myofibrils.Jikeikai Med. J. 1:119Google Scholar
  48. 48.
    Ogawa, Y. 1970. Some properties of frog fragmented sarcoplasmic reticulum with particular reference to its response to caffeine.J. Biochem. 67:667PubMedGoogle Scholar
  49. 49.
    Orentlicher, M., Brandt, P.W., Reuben, J.P. 1977. Regulation of tension in skinned muscle fibers: Effect of high concentrations of Mg-ATP.Am. J. Physiol. 233(5):C127PubMedGoogle Scholar
  50. 50.
    Orentlicher, M., Reuben, J.P., Grundfest, H., Brandt, P.W. 1974. Calcium binding and tension development in detergent-treated muscle fibers.J. Gen. Physiol. 63:168Google Scholar
  51. 51.
    Page, S. 1969. Structure and some contractile properties of fast and slow muscles of the chicken.J. Physiol. (London) 205:131Google Scholar
  52. 52.
    Pease, D.C., Jenden, D.J., Howell, J.N. 1965. Calcium uptake in glycerol-extracted rabbit psoas muscle fibers. II. Electron microscopic localization of uptake sites.J. Cell. Comp. Physiol. 65:141Google Scholar
  53. 53.
    Podolsky, R.J., Hall, T., Hatchett, S.L. 1970. Identification of oxalate precipitates in striated muscle fibers.J. Cell Biol. 44:699PubMedGoogle Scholar
  54. 54.
    Reuben, J.P., Brandt, P.W., Berman, M., Grundfest, H. 1971. Regulation of tension in the skinned crayfish muscle fiber. I. Contraction and relaxation in the absence of Ca (pCa>9).J. Gen. Physiol. 57:385Google Scholar
  55. 55.
    Reuben, J.P., Brandt, P.W., Sorenson, M.M., Eastwood, A.B. 1974. Regulation of contractile activity in isolated ‘skinned” human muscle fibers.Fed. Proc. 33:1260Google Scholar
  56. 56.
    Reuben, J.P., Wood, D.S., Eastwood, A.B. 1977. Adaptation of single fiber techniques for the study of human muscle.In: Pathogenesis of the Human Muscular Dystrophies. L.P. Rowland, editor. pp. 259–269. Excerpta Medica, AmsterdamGoogle Scholar
  57. 57.
    Reuben, J.P., Wood, D.S., Zollman, J.R., Brandt, P.W. 1975. Ca regulation in “skinned” muscle fibers.In: Concepts of Membranes in Regulation and Excitation. M. Rocha e Silva and G. Suarez-Kurtz, editors. pp. 21–39. Raven Press, New YorkGoogle Scholar
  58. 58.
    Samaha, F.J., Gergely, J. 1965. Ca++ uptake and ATPase of human sarcoplasmic reticulum.J. Clin. Invest. 44:1425PubMedGoogle Scholar
  59. 59.
    Selser, J.C., Yeh, Y., Baskin, R.J. 1976. A light-scattering measurement of membrane vesicle permeability.Biophys. J. 16:1357PubMedGoogle Scholar
  60. 60.
    Shigekawa, M., Finegan, J.-A.M., Katz, A.M. 1976. Calcium transport ATPase of canine cardiac sarcoplasmic reticulum.J. Biol. Chem. 251:6894PubMedGoogle Scholar
  61. 61.
    Solaro, R.J., Briggs, F.N. 1974. Estimating the functional capabilities of sarcoplasmic reticulum in cardiac muscle.Circ. Res. 34:531PubMedGoogle Scholar
  62. 62.
    Sorenson, M.M., Meis, L. de. 1977. Effects of anions, pH and Mg++ on Ca++ accumulation and release by sarcoplasmic reticulum vesicles.Biochim. Biophys. Acta 465:210Google Scholar
  63. 63.
    Sorenson, M.M., Reuben, J.P., Orentlicher, M., Katz, G.M. 1978. Functional heterogeneity of sarcoplasmic reticulum in skinned fibers.Biophys. J. 21:185aGoogle Scholar
  64. 64.
    Stephenson, E.W., Podolsky, R.J. 1978. The regulation of calcium in skeletal muscle.Ann. N.Y. Acad. Sci. 307:462PubMedGoogle Scholar
  65. 65.
    Szent-Gyorgyi, A. 1951. Chemistry of Muscular Contraction. (2nd ed.) Academic Press, New YorkGoogle Scholar
  66. 66.
    Tada, M., Yamamoto, T., Tonomura, Y. 1978. Molecular mechanism of active calcium transport by sarcoplasmic reticulum.Physiol. Rev. 58:1PubMedGoogle Scholar
  67. 67.
    Takagi, A., Endo, M. 1977. Guinea pig soleus and extensor digitorum longus: A study on single-skinned fibers.Exp. Neurol. 55:95PubMedGoogle Scholar
  68. 68.
    Verjovski-Almeida, S., Kurzmack, M., Inesi, G. 1978. Partial reactions in the catalytic and transport cycle of sarcoplasmic reticulum ATPase.Biochemistry 17:5006PubMedGoogle Scholar
  69. 69.
    Vianna, A.L. 1975. Interaction of calcium and magnesium in activating and inhibiting the nucleoside triphosphatase of sarcoplasmic reticulum vesicles.Biochim. Biophys. Acta 410:389Google Scholar
  70. 70.
    Weber, A. 1966. Energized calcium transport and relaxing factors.Curr. Top. Bioenerg. 2:203Google Scholar
  71. 71.
    Weber, A. 1971. Regulatory mechanisms of the calcium transport system of fragmented sarcoplasmic reticulum. I. The effect of accumulated calcium on transport and adenosine triphosphate hydrolysis.J. Gen. Physiol. 57:50Google Scholar
  72. 72.
    Weber, A., Herz, R., Reiss, I. 1963. On the mechanism of the relaxing effect of fragmented sarcoplasmic reticulum.J. Gen. Physiol. 46:679PubMedGoogle Scholar
  73. 73.
    Weber, A., Herz, R., Reiss, I. 1966. Study of the kinetics of calcium transport by isolated fragmented sarcoplasmic reticulum.Biochem. Z. 345:329Google Scholar
  74. 74.
    Weeds, A.G., Hall, R., Spurway, N.C.S. 1975. Characterization of myosin light chains from histochemically identified fibres of rabbit psoas muscle.FEBS Lett. 49:320PubMedGoogle Scholar
  75. 75.
    Winegrad, S. 1968. Intracellular calcium movements of frog skeletal muscle during recovery from tetanus.J. Gen. Physiol. 51:65PubMedGoogle Scholar
  76. 76.
    Wood, D.S. 1978. Human skeletal muscle: Analysis of Ca2+ regulation in skinned fibers using caffeine.Exp. Neurol. 58:218PubMedGoogle Scholar
  77. 77.
    Wood, D.S., Zollman, J.R., Reuben, J.P., Brandt, P.W. 1975. Human skeletal muscle: Properties of the “chemically skinned” fiber.Science 187:1075Google Scholar
  78. 78.
    Worsfold, M., Peter, J.B. 1970. Kinetics of calcium transport by fragmented sarcoplasmic reticulum.J. Biol. Chem. 245:5545PubMedGoogle Scholar
  79. 79.
    Yamamoto, T., Tonomura, Y. 1967. Reaction mechanism of the Ca++-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. I. Kinetic studies.J. Biochem. 62:558PubMedGoogle Scholar
  80. 80.
    Zebe, E., Hasselbach, W. 1966. Über die Akkumulation von Calcium im sarcoplasmatischen Reticulum von Insektmuskeln.Z. Naturforsch. 21b:1248Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1980

Authors and Affiliations

  • M. M. Sorenson
    • 1
  • J. P. Reuben
    • 1
  • A. B. Eastwood
    • 1
  • M. Orentlicher
    • 1
  • G. M. Katz
    • 1
  1. 1.Laboratories of Muscle Physiology and Muscle Morphology, H. Houston Merritt Clinical Research Center for Muscular Dystrophy and Related Diseases, Department of NeurologyColumbia UniversityNew York

Personalised recommendations