The Journal of Membrane Biology

, Volume 112, Issue 1, pp 59–66 | Cite as

Activation of Cl/OH exchange by parachloromercuribenzoic acid in rabbit renal brush-border membranes

  • Lawrence P. Karniski
Articles

Summary

The effect of the sulfhydryl reagent parachloromercuribenzoic acid (PCMB) on chloride transport was examined in rabbit renal brush-border membrane vesicles (BBMV). PCMB had no effect on the chloride conductive pathway. In the presence of an inside-alkaline pH gradient and a K+/valinomycin voltage clamp, the addition of PCMB stimulated36Cl uptake and induced a threefold overshoot above the equilibrium value, indicating Cl/OH exchange. The effect of PCMB was reversed by dithiothreitol. Cl/OH exchange was not observed in the absence of PCMB. PCMB-activated Cl/OH exchange persisted even when the membrane potential was made inside-negative relative to the controls, thus, demonstrating that PCMB's effect on36Cl uptake under pH-gradient conditions is not mediated by parallel Cl and H+ conductive pathways. PCMB-activated Cl/OH exchange was inhibited by 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS) and 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) with IC50 values of 290 and 80 μm, respectively. These results demonstrate that modification of sulfhydryl groups by PCMB activates Cl/OH exchange in BBMV.

Key Words

parachloromercuribenzoic acid Cl/OH exchange sulfhydryl reagents chloride transport DIDS brush-border membranes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alpern, R.J. 1987. Apical membrane chloride/base exchange in the rat proximal convoluted tubule.J. Clin. Invest. 79:1026–1030Google Scholar
  2. 2.
    Alpern, R.J., Howlin, K.J., Preisig, P.A. 1985. Active and passive components of chloride transport in the rat proximal convoluted tubule.J. Clin. Invest. 76:1360–1366Google Scholar
  3. 3.
    Andreoli, T.E., Schafer, J.A., Troutman, S.L., Watkins, M.C. 1979. Solvent drag component of Cl−1 flux in superficial proximal straight tubules: Evidence for a paracellular component of isotonic fluid absorption.Am. J. Physiol. 237:455–462Google Scholar
  4. 4.
    Aronson, P.S. 1978. Energy-dependence of phlorizin binding to isolated microvillus membranes.J. Membrane Biol. 42:81–98Google Scholar
  5. 5.
    Baum, M. 1988. Effect of luminal chloride on cell pH in rabbit proximal tubule.Am. J. Physiol. 254:F677-F683Google Scholar
  6. 6.
    Baum, M., Berry, C.A. 1984. Evidence for neutral trancellular NaCl transport and neutral basolateral chloride exit in the rabbit proximal convoluted tubule.J. Clin. Invest. 74:205–211Google Scholar
  7. 7.
    Beck, J.C., Sacktor, B. 1975. Energetics of the Na+-dependent transport ofd-glucose in renal brush border membrane vesicles.J. Biol. Chem. 250:8674–8680Google Scholar
  8. 8.
    Beck, J.C., Sacktor, B. 1978. The sodium electrochemical potential-mediated uphill transport ofd-glucose in renal brush border membrane vesicles.J. Biol. Chem. 253:5531–5535Google Scholar
  9. 9.
    Boelkins, M.R., Karniski, L.P. 1988. Inhibitory effect of a new chloride channel blocker on Cl transport in rabbit renal microvillus membranes.Kidney Int. 33:416(Abstr.)Google Scholar
  10. 10.
    Cassano, G., Stieger, B., Murer, H. 1984. Na/H and Cl/OH exchange in rat jejunal and rat proximal tubular brush border membrane vesicles.Pfluegers Arch. 400:309–317Google Scholar
  11. 11.
    Cassola, A.C., Mollenhauer, M., Fromter, E. 1983. The intracellular chloride activity of rat kidney proximal tubular cells.Pfluegers Arch. 399:259–265Google Scholar
  12. 12.
    Chen, P.-Y., Illsley, N.P., Verkman, A.S. 1988. Renal brush-border chloride transport mechanisms characterized using a flourescent indicator.Am. J. Physiol. 254:F114-F120Google Scholar
  13. 13.
    Gores, G.J., Nieminen, A.-L., Wray, B.E., Herman, B., Lemasters, J.J. 1989. Intracellular pH during “chemical hypoxia” in cultured rat hepatocyte. Protection by intracellular acidosis against the onset of cell death.J. Clin. Invest. 83:386–396Google Scholar
  14. 14.
    Guggino, S.E., Martin, G.J., Aronson, P.S. 1983. Specificity and modes of the anion exchanger in dog renal microvillus membranes.Am. J. Physiol. 244:F612-F621Google Scholar
  15. 15.
    Imai, M., Kondo, Y., Koseki, C., Yoshitomi, K. 1988. Dual effect of N-ethylmaleimide on Cl transport across the thin ascending limb of Henle's loop.Pfluegers Arch. 411:520–528Google Scholar
  16. 16.
    Ives, H.E., Chen, P.-Y., Verkman, A.S. 1986. Mechanism of coupling between Cl and OH transport in renal brush border membranes.Biochim. Biophys. Acta 863:91–100Google Scholar
  17. 17.
    Karniski, L.P., Aronson, P.S. 1985. Chloride-formate exchange with formic acid recycling: A mechanism of active Cl transport across epithelial membranes.Proc. Natl. Acad. Sci. USA 82:6362–6365Google Scholar
  18. 18.
    Karniski, L.P., Aronson, P.S. 1987. Anion exchange pathways for Cl transport in rabbit renal microvillus membranes.Am. J. Physiol. 253:F513-F521Google Scholar
  19. 19.
    Kramhoft, B., Lambert, I.H., Hoffmann, E.K., Jorgensen, F. 1986. Activation of Cl dependent K transport in Ehrlich ascites tumor cells.Am. J. Physiol. 251:C369-C379Google Scholar
  20. 20.
    Kuo, S.-M., Aronson, P.S. 1988. Oxalate-OH exchange in rabbit renal microvillus membrane vesiclesFASEB J. 2:A753 (Abstr.)Google Scholar
  21. 21.
    Lauf, P.K. 1985. K+:Cl cotransport: Sulfhydryls, divalent cations, and the mechanism of volume activation in a red cell.J. Membrane Biol. 88:1–13Google Scholar
  22. 22.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265–275Google Scholar
  23. 23.
    Pentilla, A., Trump, B.F. 1974. Extracellular acidosis protects Ehrlich tumor cells and rat renal cortex against anoxic injury.Science 185:277–278Google Scholar
  24. 24.
    Peterson, G.L. 1977. A simplification of the protein assay method of Lowry et al. which is more generally applicable.Anal. Biochem. 83:346–356Google Scholar
  25. 25.
    Schild, L., Geibisch, G., Karniski, L.P., Aronson, P.S. 1987. Effect of formate on volume reabsorption in the rabbit proximal tubule.J. Clin. Invest. 79:32–38Google Scholar
  26. 26.
    Schwartz, G.J. 1983. Absence of Cl−OH or Cl−HCO3 exchange in the rabbit renal proximal tubule.Am. J. Physiol. 245:F462-F469Google Scholar
  27. 27.
    Seifter, J.L., Knickelbein, R., Aronson, P.S. 1984. Absence of Cl−OH exchange and NaCl cotransport in rabbit renal microvillus membrane vesicles.Am. J. Physiol. 247:F753-F759Google Scholar
  28. 28.
    Shiuan, D., Weinstein, S.W. 1984. Evidence for electroneutral chloride transport in rabbit renal cortical brush border membrane vesicles.Am. J. Physiol. 247:F837-F847Google Scholar
  29. 29.
    Vansteveninck, J., Weed, R.I., Rothstein, A. 1965. Localization of erythrocyte membrane sulfhydryl groups essential for glucose transport.J. Gen. Physiol. 48:617–632Google Scholar
  30. 30.
    Wangemann, P., Wittner, M., DiStefano, A., Englert, H.C., Lang, H.J., Schlatter, E., Greger, R. 1986. Cl channel blockers in the thick ascending limb of the loop of Henle. Structure activity relationship.Pfluegers Arch. 407:S128-S141Google Scholar
  31. 31.
    Warnock, D.G., Yee, V.J. 1981. Chloride uptake by brush border membrane vesicles isolated from rabbit renal cortex.J. Clin. Invest. 67:103–115Google Scholar

Copyright information

© Springer-Verlag New York Inc 1989

Authors and Affiliations

  • Lawrence P. Karniski
    • 1
    • 2
  1. 1.Laboratory of Epithelial Transport, Department of Internal MedicineUniversity of IowaIowa City
  2. 2.Veterans Administration Medical CenterIowa City

Personalised recommendations