Skip to main content
Log in

Ba2+-sensitive potassium permeability of the apical membrane in newt kidney proximal tubule

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The apical membrane K+ permeability of the newt proximal tubular cells was examined in the doubly perfused isolated kidney by measuring the apical membrane potential change (V a change) during alteration of luminal K+ concentration and resultant voltage deflections caused by current pulse injection into the lumen.V a change/decade for K+ was 50 mV at K+ concentration higher than 25mm, and the resistance of the apical membrane decreased bt 58% of control when luminal K+ concentration was increased from 2.5 to 25mm. Ba2+ (1mm in the lumen) reducedV a change/decade to 24 mV and increased the apical membrane resistance by 70%. These data support the view that Ba2+-sensitive K+ conductance exists in the apical membrane of the newt proximal tubule. Furthermore, intracellular K+ activity measured by K+-selective electrode was 82.4 ± 3.6 meq/liter, which was higher than that predicted from the Nernst equation for K+ across both cell membranes. Thus, it is concluded that cell K+ passively diffuses, at least in part, through the K+ conductive pathway of the apical membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Biagi, B., Sohtell, M., Giebisch, G. 1981. Intracellular potassium activity in the rabbit proximal straight tubule.Am. J. Physiol. 241:F677-F686

    Google Scholar 

  • Bomsztyk, K., Wright, F.S. 1982. Effects of transepithelial fluid flux on transepithelial voltage and transport of calcium, sodium, chloride and potassium by renal proximal tubule.Kidney Int. 21:269 (Abstr.)

    Google Scholar 

  • Boulpaep, E.L. 1967. Ion permeability of the peritubular and luminal membrane of the renal tubular cell.In: Transport und Funktion intracellulärer Electrolyte. F. Krück, editor. pp. 98–107. Urban and Schwarzenberg, Munich

    Google Scholar 

  • Boulpaep, E.L. 1979. Electrophysiology of the kidney.In: Membrane Transport in Biology. G. Giebisch, D.C. Tosteson, and H.H. Ussing, editors. Vol. 4A, pp. 97–144. Springer-Verlag, Berlin-Heidelberg-New York

    Google Scholar 

  • Chase, S.W. 1923. The mesonephros and urogenital duct ofNecturus maculosus, Rafinesque.J. Morphol. 37:457–531

    Google Scholar 

  • Curci, S., Frömter, E. 1979. Micropuncture of lateral intercellular spaces ofNecturus gallbladder to determine space fluid K+-concentration.Nature (London) 278:355–357

    Google Scholar 

  • Eaton, D., Brodwick, M.S. 1980. Effects of barium on the potassium conductance of squid axon.J. Gen. Physiol. 75:727–750

    Google Scholar 

  • Edelman, A., Curci, S., Samaržija, I., Frömter, E. 1978. Determination of intracellular K+ activity in rat kidney proximal tubular cells.Pfluegers Arch. 378:37–45

    Google Scholar 

  • Frizzell, R.A., Schultz, S.G. 1972. Ionic conductances of extracellular shunt pathway in rabbit ileum. Influence of shunt on transmural sodium transport and electrical potential differences.J. Gen. Physiol. 59:318–346

    Google Scholar 

  • Frömter, E. 1977. Magnitude and significance of the paracellular shunt path in rat kidney proximal tubule.In: Intestinal Permeation. M. Kramer and F. Lauterbach, editors. pp. 166–178. Excerpta Medica, Amsterdam

    Google Scholar 

  • Frömter, E., Gessner, K. 1974. Active transport potentials, membrane diffusion potentials and streaming potentials across rat kidney proximal tubule.Pfluegers Arch. 351:85–98

    Google Scholar 

  • Fujimoto, M., Kubota, T. 1976. Physicochemical properties of a liquid ion exchanger microelectrode and its application to biological fluids.Jpn. J. Physiol. 26:631–650

    Google Scholar 

  • García-Díaz, J.F., Nagel, W., Essig, A. 1983. Voltage-dependent K+ conductance at the apical membrane ofNecturus gallbladder.Biophys. J. 43:269–278

    Google Scholar 

  • Giebisch, G. 1961. Measurements of electrical potential differences on single nephrons of the perfusedNecturus kidney.J. Gen. Physiol. 44, 659–678

    Google Scholar 

  • Grasset, E., Gunter-Smith, P., Schultz, S. G. 1983. Effects of Na-coupled alanine transport on intracellular K activities and the K conductance of the basolateral membranes ofNecturus small intestine.J. Membrane Biol. 71:89–94

    Google Scholar 

  • Greger, R., Schlatter, E. 1983. Properties of the lumen membrane of the cortical thick ascending limb of Henle's loop of rabbit kidney.Pfluegers Arch. 396:315–324

    Google Scholar 

  • Hoshi, T., Kawahara, K., Yokoyama, R., Suenaga, K. 1981. Changes in membrane resistances of renal proximal tubule induced by cotransport of sodium and organic solute.In: Advances in Physiological Sciences. Kidney and Body Fluids. L. Takács, editors. Vol. 11, pp. 403–407. Pergamon Press, Budapest

    Google Scholar 

  • Hoshi, T., Sakai, F. 1967. A comparison of the electrical resistances of the surface cell membrane and cellular wall in the proximal tubule of the newt kidney.Jpn. J. Physiol. 17:627–637

    Google Scholar 

  • Hunter, M., Lopes, A.G., Boulpaep, E.L., Giebisch, G.H. 1984. Single channel recordings of calcium-activated potassium channels in the apical membrane of rabbit cortical collecting tubules.Proc. Natl. Acad. Sci. USA 81:4237–4239

    Google Scholar 

  • Kubota, T., Biagi, B.A., Giebisch, G. 1983a. Intracellular potassium activity measurements in single proximal tubules ofNecturus kidney.J. Membrane Biol. 73:51–60

    Google Scholar 

  • Kubota, T., Biagi, B.A., Giebisch, G. 1983b. Effects of acidbase disturbances on basolateral membrane potential and intracellular potassium activity in the proximal tubule ofNecturus.J. Membrane Biol. 73:61–68

    Google Scholar 

  • Lang, F., Messner, G., Wang, W., Oberleithner, H. 1983. Interaction of intracellular electrolytes and tubular transport.Klin. Wochenschr. 61:1029–1037

    Google Scholar 

  • Maruyama, T., Hoshi, T. 1972. The effect ofd-glucose on the electrical potential profile across the proximal tubule of newt kidney.Biochim. Biophys. Acta 282:214–225

    Google Scholar 

  • Oberleithner, H., Lang, F., Greger, R., Wang, W., Giebisch, G. 1983. Effect of luminal potassium on cellular sodium activity in the early distal tubule ofAmphiuma kidney.Pfluegers Arch. 396:34–40

    Google Scholar 

  • Okada, Y., Sato, T., Inoue, A. 1975. Effects of potassium ions and sodium ions on membrane potential of epithelial cells in rat duodenum.Biochim. Biophys. Acta 413:104–115

    Google Scholar 

  • O'Neil, R.G. 1983. Voltage-dependent interaction of barium and cesium with the potassium conductance of the cortical collecting duct apical cell membrane.J. Membrane Biol. 74:165–173

    Google Scholar 

  • O'Neil, R.G., Sansom, S.C. 1984. Characterization of apical cell membrane Na+ and K+ conductances of cortical collecting duct using microelectrode techniques.Am. J. Physiol. 247:F14-F24

    Google Scholar 

  • Robinson, R.A., Stokes, R.H. 1968. Electrolyte Solutions. (2nd ed. rev.) p. 494, Butterworths, London

    Google Scholar 

  • Sakai, T., Kawahara, K. 1983. The structure of the kidney of Japanese newts,Triturus (Cynops) pyrrhogaster.Anat. Embryol. 166:31–52

    Google Scholar 

  • Schultz, S.G., Frizzell, R.A., Nellans, H.N. 1977. Active sodium transport and the electrophysiology of rabbit colon.J. Membrane Biol. 33:351–384

    Google Scholar 

  • Spring, K., Giebisch, G. 1977. Kinetics of Na+ transport inNecturus proximal tubule.J. Gen. Physiol. 70:307–328

    Google Scholar 

  • Whittembury, G., Sugino, N., Solomon, A.K. 1961. Ionic permeability and electrical potential differences inNecturus kidney cells.J. Gen. Physiol. 44:689–712

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawahara, K. Ba2+-sensitive potassium permeability of the apical membrane in newt kidney proximal tubule. J. Membrain Biol. 88, 283–292 (1985). https://doi.org/10.1007/BF01871092

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871092

Key Words

Navigation