Skip to main content
Log in

Solubilization and reconstitution of a vanadate-sensitive H+-ATPase from the plasma membrane ofBeta vulgaris

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

A vanadate-sensitive H+-translocating ATPase isolated from red beet plasma membrane has been solubilized in active form and successfully reconstituted into artificial proteoliposomes. The H+-ATPase was solubilized in active form with deoxycholate, CHAPSO or octylglucoside in the presence of glycerol. Following detergent removal by gel filtration and reconstitution into proteoliposomes, ATP:Mg-dependent H+ transport could be measured as ionophore-reversible quenching of acridine orange fluorescence. Solubilization resulted in a three-to fourfold purification of the plasma membrane ATPase, with some additional enrichment of specific activity following reconstitution. H+ transport activity was inhibited half-maximally between 1 and 5 μM vanadate (Na3VO4) and nearly abolished by 100 μM vanadate. ATPase activity of native plasma membrane showed aK i for vanadate inhibition of 9.5 μM, and was inhibited up to 80% by 15 to 20 μM vanadate (Na3VO4). ATPase activity of the reconstituted vesicles showed aK i of 2.6 μM for vanadate inhibition. The strong inhibition by low concentrations of vanadate indicates a plasma membrane rather than a mitochondrial or tonoplast origin for the reconstituted enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ames B.N. 1966. Assay of inorganic phosphate, total phosphate, and phosphatases.Methods Enzymol. 8:115–118

    Google Scholar 

  • Bennett, A.B., O'Neill, S.D., Spanswick, R.M. 1984. H+-ATPase activity from storage tissue of red beet. I. Identification and characterization of an anion-sensitive H+-ATPase.Plant Physiol. (in press)

  • Bennett, A.B., Spanswick, R.M. 1983a. Optical measurements of ΔpH and Δψ in corn root membrane vesicles: Kinetic analysis of Cl effects on a proton-translocating ATPase.J. Membrane Biol. 71:95–107

    Google Scholar 

  • Bennett, A.B., Spanswick, R.M. 1983b. Solubilization and reconstitution of an anion-sensitive H+-ATPase for corn roots.J. Membrane Biol. 75:21–31

    Google Scholar 

  • Bowman, B.J., Blasco, F., Slayman, C.W. 1981.Purification and characterization of the plasma membrane ATPase ofNeurospora crassa.J. Biol. Chem. 256:12343–12349

    Google Scholar 

  • Bowman, B.J., Slayman, C.W. 1979. The effects of vanadate on the plasma membrane ATPase ofNeurospora crassa.J. Biol. Chem. 254:2928–2934

    PubMed  Google Scholar 

  • Brauer, D., Teel, M.R., Frick, H. 1981. Augmentation of ion uptake in maize roots is associated with the biosynthesis of plasma membrane proteins.Z. Pflanzenphysiol. 105:119–130

    Google Scholar 

  • Briskin, D.P., Poole, R.J. 1983a. Characterization of a K+-stimulated ATPase associated with the plasma membrane of red beet.Plant Physiol. 71:350–355

    Google Scholar 

  • Briskin, D.P., Poole, R.J. 1983b. Plasma membrane ATPase of red beets forms a phosphorylated intermediate.Plant Physiol. 71:507–512

    Google Scholar 

  • Cantley, L.C., Jr., Cantley, L.G., Josephson, L. 1978. A characterization of vanadate interactions with the (Na,K)-ATPase. Mechanistic and regulatory implications.J. Biol. Chem. 253:7361–7368

    PubMed  Google Scholar 

  • Cantley, L.C., Josephson, L., Warner, R., Yanagisawa, M., Lechene, C. Guidotti, G. 1977. Vanadate is a potent (Na, K)-ATPase inhibitor found in ATP derived from muscle.J. Biol. Chem. 252:7421–7423

    PubMed  Google Scholar 

  • Dean, W.L., Tanford, C., 1978. Properties of a delipidated, detergent-activated Ca2+-ATPase.Biochemistry 17:1683–1690

    PubMed  Google Scholar 

  • Dixon, M., Webb, E.C. 1958. Enzymes. Longmans, Green, New York

    Google Scholar 

  • DuPont, F.M., Leonard, R.T. 1980. Solubilization and partial purification of the adenosine triphosphatase from a corn root plasma membrane fraction.Plant Physiol. 65:931–938

    Google Scholar 

  • Gallagher, S.R., Leonard, R.T. 1982. Effect of vanadate, molybdate, and azide on membrane-associated ATPase and soluble phosphatase activities of corn roots.Plant Physiol. 70:1335–1340

    Google Scholar 

  • Hansson, G., Kylin, A. 1967. ATPase activities in homogenates from sugar beet roots, relation to Mg2+ and (Na++K+)-stimulation.Z. Pflanzenphysiol. 60:270–275

    Google Scholar 

  • Helenius, A., Simons, K. 1975. Solubilization of membranes by detergents.Biochim. Biophys. Acta 415:29–79

    PubMed  Google Scholar 

  • Kitasato, H. 1968. The influence of H+ on the membrane potential and ion fluxes ofNitella.J. Gen. Physiol. 52:60–87

    PubMed  Google Scholar 

  • Kyte, J. 1971. Purification of the sodium-and potassium-dependent adenosine triphosphatase from canine renal medulla.J. Biol. Chem. 246:4157–4165

    PubMed  Google Scholar 

  • Leonard, R.T., Hodges, T.K. 1973. Characterization of plasma membrane-associated adenosine triphosphatase activity of oat roots.Plant Physiol. 52:6–12

    Google Scholar 

  • Macara, I.G. 1980. Vanadium—An element in search of a role.Trends Biochem. Sci. 5:92–94

    Google Scholar 

  • MacLennan, D.H. 1970. Purification and properties of an adenosine triphosphatase from sarcoplasmic reticulum.J. Biol. Chem. 245:4508–4518

    PubMed  Google Scholar 

  • Nagahashi, J., Kane, A.P. 1982. Triton-stimulated nucleoside diphosphatase activity: Subcellular localization in corn root homogenates.Protoplasma 112:167–173

    Google Scholar 

  • O'Neal, S.G., Rhoads, D.B., Racker, E. 1979. Vanadate inhibition of sarcoplasmic reticulum Ca2+-ATPase and other ATPases.Biochem. Biophys. Res. Commun. 89:845–850

    PubMed  Google Scholar 

  • O'Neill, S.D., Bennett, A.B., Spanswick, R.M. 1983. Characterization of a NO 3 -sensitive H+-ATPase from corn roots.Plant Physiol. 72:837–846

    Google Scholar 

  • O'Neill, S.D., Spanswick, R.M. 1984. Characterization of native and reconstituted plasma membrane H+-ATPase from the plasma membrane ofBeta vulgaris.J. Membrane Biol. 79:245–256

    Google Scholar 

  • Perlin, D.S., Slayman, C.W. 1982. A rapid determination of ATP-induced pH gradients in native plasma membrane and reformed vesicles fromNeurospora.In: Plasmalemma and Tonoplast: Their Functions in the Plant Cell. D. Marmé, E. Marrè and R. Hertel editors. pp. 423–430. Elsevier Biomedical, Amsterdam

    Google Scholar 

  • Perlin, D.S., Spanswick, R.M. 1982. Isolation and assay of corn root membrane vesicles with reduced proton permeability.Biochim. Biophys. Acta 690:178–186

    Google Scholar 

  • Peterson, G.L. 1978. A simplified method for analysis of inorganic phosphate in the presence of interfering substances.Anal. Biochim. 84:164–172

    Google Scholar 

  • Poole, R.J. 1974. Ion transport and electrogenic pumps in storage tissue cells.Can. J. Bot. 52:1023–1028

    Google Scholar 

  • Poole, R.J. 1978. Energy coupling for membrane transport.Annu. Rev. Plant Physiol. 29:437–460

    Google Scholar 

  • Scarborough, G.A. 1980. Proton translocation catalyzed by the electrogenic ATPase in the plasma membrane ofNeurospora.Biochemistry 19:2925–2931

    PubMed  Google Scholar 

  • Schaffner, W., Weissmann, C. 1973. A rapid, sensitive, and specific method for the determination of protein in dilute solution.Anal. Biochem. 56:502–514

    Article  PubMed  Google Scholar 

  • Slayman, C.L. 1965a. Electrical properties ofNeurospora crassa. Effects of external cations on the intracellular potential.J. Gen. Physiol. 49:69–92

    PubMed  Google Scholar 

  • Slayman, C.L. 1965b. Electrical properties ofNeurospora crassa. Respiration and the intracellular potential.J. Gen. Physiol. 49:93–116

    PubMed  Google Scholar 

  • Spanswick, R.M. 1972. Evidence for an electrogenic ion pump inNitella translucens. I. The effects of pH, K+, Na+, light and temperature on the membrane potential and resistance.Biochim. Biophys. Acta 288:73–89

    PubMed  Google Scholar 

  • Spanswick, R.M., Bennett, A.B. 1984. Electrogenic ion transport in higher plants.In: Electrogenic Transport: Fundamental Principles and Physiological Implications. M.P. Blaustein and M. Lieberman, editors. pp. 331–344. Raven, New York

    Google Scholar 

  • Sze, H. 1982. Characterization of nigericin-stimulated ATPase from sealed microsomal vesicles of tobacco callus.Plant Physiol. 70:498–505

    Google Scholar 

  • Sze, H., Churchill, K.A. 1981. Mg2+/KCl-ATPase of plant plasma membranes is an electrogenic pump.Proc. Natl. Acad. Sci. USA 78:5578–5582

    Google Scholar 

  • Vara, F., Serrano, R. 1982. Partial purification and properties of the proton-translocating ATPase of plant plasma membranes.J. Biol. Chem. 257:12826–12830

    PubMed  Google Scholar 

  • Walker, R.R., Leigh, R.A. 1981. Characterization of a salt-stimulated ATPase activity associated with vacuoles isolated from storage roots of red beet (Beta vulgaris).Planta 153:140–149

    Google Scholar 

  • Willsky, G.R. 1979. Characterization of the plasma membrane Mg2+-ATPase from the yeast,Saccharomyces cerevisiae.J. Biol. Chem. 254:3326–3332

    PubMed  Google Scholar 

  • Wolosin, J.M., Forte, J.G. 1983. Kinetic properties of the KCl transport at the secreting apical membrane of the oxyntic cell.J. Membrane Biol. 71:195–207

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Neill, S.D., Spanswick, R.M. Solubilization and reconstitution of a vanadate-sensitive H+-ATPase from the plasma membrane ofBeta vulgaris . J. Membrain Biol. 79, 231–243 (1984). https://doi.org/10.1007/BF01871062

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871062

Key Words

Navigation