Skip to main content
Log in

Intracellular calcium content of human erythrocytes: Relation to sodium transport systems

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

To study the possible role of intracellular Ca (Ca i ) in controlling the activities of the Na+−K+ pump, the Na+−K+ cotransport and the Na+/Li+ exchange system of human erythrocytes, a method was developed to measure the amount of Ca embodied within the red cell. For complete removal of Ca associated with the outer aspect of the membrane, it proved to be essential to wash the cells in buffers containing less than 20nm Ca. Ca was extracted by HClO4 in Teflon® vessels boiled in acid to avoid Ca contaminations and quantitated by flameless atomic absorption. Ca i of fresh human erythrocytes of apparently healthy donors ranged between 0.9 and 2.8 μmol/liter cells. The mean value found in females was significantly higher than in males. The interindividual different Ca contents remained constant over periods of more than one year. Sixty to 90% of Ca i could be removed by incubation of the cells with A23187 and EGTA. The activities of the Na+−K+ pump, of Na+−K+ cotransport and Na+/Li+ exchange and the mean cellular hemoglobin content fell with rising Ca i ; the red cell Na+ and K+ contents rose with Ca i . Ca depletion by A23187 plus EGTA as well as chelation of intracellular Ca2+ by quin-2 did not significantly enhance the transport rates. It is concluded that the large scatter of the values of Ca i of normal human erythrocytes reported in the literature mainly results from a widely differing removal of Ca associated with the outer aspect of the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Jobore, A., Minocherhomjee, A.M., Villalobo, A., Roufogalis, B.D. 1984. Active calcium transport in normal and abnormal human erythrocytes.In: Erythrocyte Membranes. 3: Recent Clinical and Experimental Advances. pp. 243–292. Alan R. Liss, New York

    Google Scholar 

  2. Blinks, J.R., Gil Wier, W., Hess, P., Prendergast, F.G. 1982. Measurement of Ca2+ concentrations in living cells.Prog. Biophys. Mol. Biol. 40:1–114

    Google Scholar 

  3. Bookchin, R.M., Lew, V.L. 1980. Progressive inhibition of the Ca pump and Ca: Ca exchange in sickle red cells.Nature (London) 284:561–563

    Google Scholar 

  4. Brown, A.M., Lew, V.L. 1983. The effect of intracellular calcium on the sodium pump of human red cells.J. Physiol. (London) 343:455–493

    Google Scholar 

  5. Cohen, C.M., Solomon, A.K. 1976. Ca binding to the human red cell membrane: Characterization of membrane preparations and binding sites.J. Membrane Biol. 29:345–372

    Google Scholar 

  6. Collier, H.B., Lam, A. 1970. Binding of Ca2+ and Mg2+ by 2,3-diphosphoglycerate.Biochim. Biophys. Acta 222:299–306

    Google Scholar 

  7. Dedman, J.R., Potter, J.D., Jackson, R.L., Johnson, J.D., Means, A.R. 1977. Physicochemical properties of rat testis Ca2+-dependent regulator protein of cyclic nucleotide phosphodiesterase. Relationship of Ca2+ binding, conformational changes, and phosphodiesterase activity.J. Biol. Chem. 252:8415–8422

    Google Scholar 

  8. Devynck, M.A., Pernollet, M.G., Nunez, A.M., Meyer, P. 1981. Analysis of calcium handling in erythrocyte membranes of genetically hypertensive rats.Hypertension 3:397–403

    Google Scholar 

  9. Duhm, J., Göbel, B.O. 1982. Sodium-lithium exchange and sodium-potassium cotransport in human erythrocytes. Part 1: Evaluation of a simple uptake test to assess the activity of the two transport systems.Hypertension 4:468–476

    Google Scholar 

  10. Duhm, J., Göbel, B.O. 1984. Role of the furosemide-sensitive Na+/K+ transport system in determining the steadystate Na+ and K+ content and volume of human erythrocytesin vitro andin vivo.J. Membrane Biol. 77:243–254

    Google Scholar 

  11. Dunn, M.J. 1974. Red blood cell calcium and magnesium: Effects upon sodium and potassium transport and cellular morphology.Biochim. Biophys. Acta 352:97–116

    Google Scholar 

  12. Eaton, J.W., Skelton, T.D., Swofford, H.S., Kolpin, C.E., Jacob, H.S. 1973. Elevated erythrocyte calcium in sickle cell disease.Nature (London) 246:105–106

    Google Scholar 

  13. Engelmann, B., Duhm, J. 1986. Intracellular calcium content of human erythrocytes.Pfluegers Arch. 406(suppl.):R55

    Google Scholar 

  14. Engelmann, B., Duhm, J. 1987. Total intracellular calcium content and sodium transport in erythrocytes of essential hypertensive patients.J. Hypertension 4(suppl. 6) (in press)

  15. Escobales, N., Canessa, M. 1985. Ca2+-activated Na+ fluxes in human red cells.J. Biol. Chem. 260:11914–11923

    Google Scholar 

  16. Fujii, T., Sato, T., Hanzawa, T. 1973. Calcium and magnesium contents of mammalian erythrocyte membranes.Chem. Pharm. Bull. 21:171–175

    Google Scholar 

  17. Garay, R.P. 1982. Inhibition of the Na+/K+ cotransport system by cyclic AMP and intracellular Ca2+ in human red cells.Biochim. Biophys. Acta 688:786–792

    Google Scholar 

  18. Gerlach, E., Deuticke, B. 1963. Eine einfache Methode zur Mikrobestimmung von Phosphat in der Papierchromatographie.Biochem. Z. 337:477–479

    Google Scholar 

  19. Gerlach, E., Fleckenstein, A., Gross, E. 1958. Der intermediäre Phosphat-Stoffwechsel des Menschen-Erythrozyten. Papierchromatographische Studien unter Verwendung von32P-markiertem Orthophosphat.Pfluegers Arch. 266:528–555

    Google Scholar 

  20. Harrison, D.G., Long, C. 1968. The calcium content of human erythrocytes.J. Physiol. (London) 199:367–381

    Google Scholar 

  21. Lassen, U.V. 1977. Electrical potential and conductance of the red cell membrane.In: Membrane Transport in Red Cells. J.C. Ellory and V.L. Lew, editors. pp 137–172. Academic, London

    Google Scholar 

  22. Lauf, P.K. 1985. K+: Cl cotransport: Sulfhydryls, divalent cations, and the mechanism of volume activation in a red cell.J. Membrane Biol. 88:1–13

    Google Scholar 

  23. Lew, V.L., Ferrira, H.G. 1977. The effect of Ca on the K permeability of red cells.In: Membrane Transport in Red Cells. J.C. Ellory and V.L. Lew, editors. pp. 93–100. Academic, London

    Google Scholar 

  24. Lew, V.L., Hockaday, A., Sepulveda, M.A., Somplyo, A.P., Somlyo, A.V., Ortiz, O.E., Bookchin, R.M. 1985. Compartmentalization of sickle-cell calcium in endocytic inside-out vesicles.Nature (London) 315:586–589

    Google Scholar 

  25. Lew, V.L., Tsien, R.Y., Miner, C., Boockchin, R.M. 1982. Physiological Ca 2+ i level and pump-leak turnover in intact red cells measured using an incorporated Ca chelator.Nature (London) 298:478–481

    Google Scholar 

  26. Lichtman, M.A., Weed, R.I. 1972. Divalent cation content of normal and ATP-depleted erythrocytes and erythrocyte membranes.Nouv. Rev. Franc. Hemat. 12:799–814

    Google Scholar 

  27. Long, C., Mouat, B. 1971. The binding of calcium ions by erythrocytes and ‘ghost’-cell membranes.Biochem. J. 123:829–836

    Google Scholar 

  28. McNamara, M.K., Wiley, J.S. 1986. Passive permeability of human red blood cells to calcium.Am. J. Physiol. 250:C26-C31

    Google Scholar 

  29. Motais, R., Baroin, A., Baldy, S. 1981. Chloride permeability in human red cells: Influence of membrane protein rearrangement resulting from ATP depletion and calcium accumulation.J. Membrane Biol. 62:195–206

    Google Scholar 

  30. Murphy, E., Levy, L., Berkowitz, L.R., Orringer, E.P., Gabel, S.A., London, R.E. 1986. Nuclear magnetic resonance measurement of cytosolic free calcium levels in human red blood cells.Am. J. Physiol. 251:C496-C504

    Google Scholar 

  31. O'Rear, E.A., Udden, M.M., McIntire, L.V., Lynch, E.C. 1981. Problems in measurement of erythrocyte calcium.Am. J. Hematol. 11:283–292

    Google Scholar 

  32. Palek, J. 1977. Red cell calcium content and transmembrane calcium movements in sickle cell anemia.J. Lab. Clin. Med. 89:1365–1374

    Google Scholar 

  33. Porzig, H., Stoffel, D. 1978. Equilibrium binding of calcium to fragmented human red cell membranes and its relation to calcium-mediated effects on cation permeability.J. Membrane Biol. 40:117–142

    Google Scholar 

  34. Postnov, Y.V., Orlov, S.N., Pokudin, N.I. 1979. Decrease of calcium binding by the red blood cell membrane in spontaneously hypertensive rats and in essential hypertension.Pfluegers Arch. 379:191–195

    Google Scholar 

  35. Romero, P.J. 1976. Role of membrane-bound Ca in ghost permeability to Na and K.J. Membrane Biol. 29:329–343

    Google Scholar 

  36. Rubin, E., Schlegel, R.A., Williamson, P. 1986. Endocytosis in sickle erythrocytes: A mechanism for elevated intracellular Ca2+ levels.J. Cell. Physiol. 126:53–59

    Google Scholar 

  37. Schatzmann, H.J., Vincenzi, F.F. 1969. Calcium movements across the membrane of human red cells.J. Physiol. (London) 201:369–395

    Google Scholar 

  38. Shalev, O., Mogilner, S., Shinar, E., Rachmilewitz, E.A., Schrier, S.L. 1984. Impaired erythrocyte calcium homeostasis in β-thalassemia.Blood 64:546–566

    Google Scholar 

  39. Shiga, T., Sekiya, M., Maeda, N., Kon, K., Okazaki, M. 1985. Cell age-dependent changes in deformability and calcium accumulation of human erythrocytes.Biochim. Biophys. Acta 814:289–299

    Google Scholar 

  40. Sillen, L.G., Martell, E. 1964. Stability constants of metalion complexes. p. 651. The Chemical Society. London

    Google Scholar 

  41. Simons, T.J.B. 1976. The preparation of human red cell ghosts containing calcium buffers.J. Physiol. (London) 256:209–225

    Google Scholar 

  42. Simons, T.J.B. 1982. A method for estimating free Ca within human red blood cells, with an application to the study of their Ca-depencent K permeability.J. Membrane Biol. 66:235–247

    Google Scholar 

  43. Wiley, J.S., McCulloch, K.E., Bowden, D.S. 1982. Increased calcium permeability of cold-stored erythrocytes.Blood 60:92–98

    Google Scholar 

  44. Wiley, J.S., Shaller, C.C. 1977. Selective loss of calcium permeability on maturation of reticulocytes.J. Clin. Invest. 59:1113–1119

    Google Scholar 

  45. Yoshida, M., Tada, Y., Kasahara, Y., Ando, K., Satoyoshi, E. 1986. Ca content of human erythrocytes—What is the true value?Cell Calcium 7:169–174

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engelmann, B., Duhm, J. Intracellular calcium content of human erythrocytes: Relation to sodium transport systems. J. Membrain Biol. 98, 79–87 (1987). https://doi.org/10.1007/BF01871047

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871047

Key Words

Navigation