Advertisement

The Journal of Membrane Biology

, Volume 111, Issue 3, pp 241–251 | Cite as

Electrophysiological investigation of the amino acid carrier selectivity in epithelial cells fromXenopus embryo

  • Jacqueline Bergman
  • Mina Zaafrani
  • Claude Bergman
Articles

Summary

The electrical responses induced by external applications of neutral amino acids were used to determine whether different carriers are expressed in the membrane of embryonic epithelial cells ofXenopus laevis. Competition experiments were performed under voltage-clamp conditions at constant membrane potential.

Gly,l-Ala,l-Pro,l-Ser,l-Asn andl-Gln generate electrical responses with similar apparent kinetic constants and compete for the same carrier. They are [Na] o and voltage-dependent, insensitive to variations in [Cl] o and [HCO3] o , inhibited by pH o changes, by amiloride and, for a large fraction of the current, by MeAIB. The increase in [K] o at constant and negative membrane potential reduces the response, whereas lowering [K] o augments it.

l-Leu,l-Phe andl-Pro appear to compete for another carrier. They generate electrogenic responses insensitive to amiloride and MeAIB, as well as to alterations of membrane potential, [Na] o and [K] o . Lowering [Cl] o decreases their size, whereas increasing [HCO3] o at neutral pH o increases it.

It is concluded that at least two and possibly three transport systems (A, ASC and L) are expressed in the membrane of the embryonic cells studied. An unexpected electrogenic character of the L system is revealed by the present study and seems to be indirectly linked to the transport function.

l-Pro seems to be transported by system A or ASC in the presence of Na and by system L in the absence of Na. MeAIB induces an inward current.

Key Words

Na-gradient coupled transports amino acid transports electrogenic transports epithelial cells Xenopus laevis embryo 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbour, B., Brew, H., Attwell, D. 1988. Electrogenic glutamate uptake in glial cells is activated by intracellular potassium.Nature (London) 335:433–435Google Scholar
  2. Bass, R., Hedegaard, H.B., Dillehay, L., Moffett, J., Englesberg, E. 1981. The A, ASC and L systems for the transport of amino acids in Chinese hamster ovary cells (CHO-K1).J. Biol. Chem. 265:10259–10266Google Scholar
  3. Bear, E.C., Petersen, O.H. 1987.l-alanine evokes opening of single Ca2+-activated K+ channels in rat liver cells.Pfluegers Arch. 410:342–344Google Scholar
  4. Bergman, C., Bergman, J. 1981. Electrogenic responses induced by neutral amino acids in endoderm cells fromXenopus embryo.J. Physiol. (London) 318:259–278Google Scholar
  5. Bergman, C., Bergman, J. 1985. Origin and voltage dependence of asparagine-induced depolarization in intestinal cells ofXenopus embryo.J. Physiol. (London) 366:197–220Google Scholar
  6. Bergman, C., Bergman, J., Mouttapa, I., 1986. Specific effect of potassium ions on a sodium-coupled amino acid transport. An electrophysiological study. INSERM Symposium No. 26. F. Alvarado and C.H. Van Os, editors. Elsevier, AmsterdamGoogle Scholar
  7. Boerner, P., Saier, M.H. 1982. Growth regulation and amino acid transport in epithelial cells: Influence of culture conditions and transformation on A, ASC and L transport activities.J. Cell. Physiol. 113:240–246PubMedGoogle Scholar
  8. Brown, P., Sepúlveda, F. 1985. Potassium movements associated with amino acid and sugar transport in enterocytes isolated from rabbit jejunum.J. Physiol. (London) 363:271–286Google Scholar
  9. Burckhardt, G., Kinne, R., Stange, G., Murer, H. 1980. The effects of potassium and membrane potential on sodium-dependent glutamic acid uptake.Biochim. Biophys. Acta 599:191–201PubMedGoogle Scholar
  10. Bussolati, O., Laris, P., Longo, N., Dall'Asta, V., Franchi-Gazzola, R., Guidotti, G., Gazzola, G. 1986. Effect of extracellular potassium on amino acid transport and membrane potential in fetal human fibroblasts.Biochim. Biophys. Acta 854:240–250PubMedGoogle Scholar
  11. Carter-Su, C., Kimmich, G.A. 1980. Effects of membrane potential on Na-dependent sugar transport by ATP-depleted intestinal cells.Am. J. Physiol. 238:C73-C80Google Scholar
  12. Christensen, H.N., Cespedes, C. de, Handlogten, M.E., Ronquist, G. 1973. Energization of amino acids transport, studied for the Ehrlich ascites tumour cell.Biochim. Biophys. Acta. 300:487–522PubMedGoogle Scholar
  13. Christensen, H.N., Liang, M., Archer, E.G. 1967. A distinct Na+-requiring transport system for alanine, serine, cysteine and similar amino acids.J. Biol. Chem. 242:5237–5246Google Scholar
  14. Collarini, E.J., Oxender, D.L. 1987. Mechanisms of transport of amino acids across membranes.Annu. Rev. Nutr. 7:75–117PubMedGoogle Scholar
  15. Curran, P.F., Schultz, S.G., Chez, R.A., Fuisz, R.E. 1967. Kinetic relations of the Na-amino acid interaction at the mucosal border of intestine.J. Gen. Physiol. 50:1261–1286PubMedGoogle Scholar
  16. Eddy, A.A. 1968. A net gain of sodium ions and a net loss of potassium ions accompanying the uptake of glycine by mouse ascites tumour cells in the presence and absence of sodium cyanide.Biochem. J. 108:195–206PubMedGoogle Scholar
  17. Eddy, A.A., Hogg, M.C. 1969. Further observations on the inhibitory effect of extracellular potassium ions on glycine uptake by mouse ascites-tumour cells.Biochem. J. 114:807–814PubMedGoogle Scholar
  18. Englesberg, E., Moffett, J. 1986. A genetic approach to the study of neutral amino acid transport in mammalian cells in culture.J. Membrane Biol. 91:199–212Google Scholar
  19. Fehlmann, M., Samson, M., Koch, K., Leffert, H., Freychet, P., 1981. Amiloride inhibits protein synthesis in isolated rat hepatocytes.Life Sci. 28:1295–1302PubMedGoogle Scholar
  20. Geck, P., Heinz, E. 1976. Coupling in secondary transport. Effect of electrical potentials on the kinetics of ion linked transport.Biochim. Biophys. Acta 443:49–63PubMedGoogle Scholar
  21. Gibb, L.E., Eddy, A.A. 1972. An electrogenic sodium pump as a possible factor leading to the concentration of amino acids by mouse ascites-tumour cells with reversed sodium ion concentration gradient.Biochem. J. 129:979–981PubMedGoogle Scholar
  22. Grasset, E., Gunter-Smith, P., Schultz, S.G. 1983. Effects of Na-coupled alanine transport in intracellular K activities and the K conductance of the basolateral membranes ofNecturus small intestine.J. Membrane Biol. 71:89–94Google Scholar
  23. Gunter-Smith, P.J., Grasset, E., Schultz, S.G. 1982. Sodiumcoupled amino acid and sugar transport byNecturus small intestine.J. Membrane Biol. 66:25–39Google Scholar
  24. Jauch, P., Petersen, O.H., Läuger, P. 1986. Electrogenic properties of the sodium-alanine cotransporter in pancreatic acinar cells.J. Membrane. Biol. 94:99–117Google Scholar
  25. Jung, D., Schwarz, W., Passow, H. 1984. Sodium-alanine cotransport in oocytes ofXenopus laevis.J. Membrane Biol. 78:29–34Google Scholar
  26. Kehoe, J.S. 1976. Electrogenic effects of neutral amino acids on neurons ofAplysia californica.Cold Spring Habor Symp. Quant. Biol. 40:145–155Google Scholar
  27. Kilb, H., Stämpfli, R. 1955. Ein Vielweghahn zur raschen Umschaltung auf verschiedene Durchströmmungs flüssigkeiten.Helv. Physiol. Pharmacol. Acta 13:191–194PubMedGoogle Scholar
  28. Kilberg, M.S., Christensen, H.N. 1980. The relation between membrane potential and the transport activity of systems A and L in plasma membrane vesicles of the Ehrlich cell.Membrane Biochem. 3:155–168Google Scholar
  29. Kilberg, M.S., Handlogten, M.E., Christensen, H.N. 1980. Characteristics of an amino acid transport system in rat liver for glutamine, asparagine histidine and closely related analogs.J. Biol. Chem. 255:4011–4019Google Scholar
  30. Kristensen, L. 1986. Associations between transports of alanine and cations across cell membranes in rat hepaocytes.Am. J. Physiol. 251:G575-G584PubMedGoogle Scholar
  31. Makowske, M., Christensen, H.N. 1982. Hepatic transport system interconverted by protonation from service for neutral to service for anionic amino acids.J. Biol. Chem. 257:14635–14638PubMedGoogle Scholar
  32. Nieuwkopf, P.D., Faber, J. 1975. Normal Table ofXenopus laevis (Daudin). North Holland, AmsterdamGoogle Scholar
  33. Oxender, D., Christensen, H.N. 1963. Distinct mediating systems for the transport of neutral amino acids by the Ehrlich cell.J. Biol. Chem. 238:3686–3699Google Scholar
  34. Renner, E.L., Lake, J.R., Cragoe, E., Jr., Scharschmidt, B.F. 1988. Amiloride and amiloride analogs inhibit Na+/K+-transporting ATPase and Na+-coupled alanine transport in rat hepatocytes.Biochim. Biophys. Acta 938:386–394PubMedGoogle Scholar
  35. Saier, M.H., Jr. Daniels, G.A., Boerner, P., Lin, J. 1988. Neutral amino acid transport systems in animal cells: Potential targets of oncogene action and regulators of cellular growth.J. Membrane Biol. 104:1–20Google Scholar
  36. Samarzija, I., Hinton, B.T., Frömeter, E. 1982. Electrophysiological analysis of rat renal sugar and amino acid transport: III. Neutral amino acids.Pfluegers Arch. 393:199–209Google Scholar
  37. Schultz, S.G., Curran, P.F. 1970. Coupled transport of sodium and organic solute.Physiol. Rev. 50:637–718PubMedGoogle Scholar
  38. Schultz, S.G., Hudson, R.L., Lapointe, J.Y. 1985. Electrophysiological studies of sodium cotransport in epithelia: Toward a cellular model.Ann. N.Y. Acad. Sci. 456:127–135PubMedGoogle Scholar
  39. Sheppard, D.N., Giraldez, F., Sepúlveda, F.V. 1988. K+ channels activated byl-alanine transport in isolatedNecturus euterocytes.FEBS Lett. 234:446–448PubMedGoogle Scholar
  40. Thomas, E.L., Christensen, H.N. 1971. Nature of the cosubstrate actions of Na and neutral amino acids in a transport system.J. Biol. Chem. 246:1682–1688Google Scholar
  41. White, M.F. 1985. The transport of cationic amino acids across the plasma membrane of mammalian cells.Biochim. Biophys. Acta 822:355–374PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • Jacqueline Bergman
    • 1
  • Mina Zaafrani
    • 1
  • Claude Bergman
    • 2
  1. 1.Laboratoire de Neurobiologie et Neuropharmacologie du DéveloppementUniversité Paris-Sud, Centre d'OrsayOrsayFrance
  2. 2.Laboratoire de NeurobiologieEcole Normale SupérieureParisFrance

Personalised recommendations