Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Temperature dependence of gating current in myelinated nerve fibers

  • 72 Accesses

  • 15 Citations

Summary

Asymmetrical displacement currents and Na currents of single myelinated nerve fibers ofXenopus laevis were studied in the temperature range from 5 to 24°C. The time constant of the on-response atE=4 mV,τ on, was strongly temperature dependent, whereas the amount of displaced charge atE=39 mV, Qon, was only slightly temperature dependent. The mean Q10 forτ on -1 was 2.54, the mean Q10 for Qon was 1.07. The time constant of charge immobilization,τ i , atE=4 mV varied significantly (α=0.001) with temperature. The mean Q10 forτ i -1 was 2.71±0.38. The time constants of immobilization of gating charge and of fast inactivation of Na permeability were similar in the temperature range from 6 to 22°C. The Qoff/Qon ratio forE=4 mV pulses of 0.5 msec duration decreased with increasing temperature. The temperature dependence of the time constant of the off-response could not be described by a single Q10 value, since the Q10 depended on the duration of the test pulse. Increasing temperature shifted Qon (E) curves to more negative potentials by 0.51 mVK −1, but shiftedP Na (E) curves andh (E) curves to more positive potentials by 0.43 and 0.57 mV K−1, respectively.h (E=−70 mV) increased monotonously with increasing temperature. The present data indicate that considerable entropy changes may occur when the Na channel molecule passes from closed through open to inactivated states.

This is a preview of subscription content, log in to check access.

References

  1. Almers, W. 1978. Gating currents and charge movements in excitable membranes.Rev. Physiol. Biochem. Pharmacol. 82:96–190

  2. Armstrong, C.M., Bezanilla, F. 1973. Currents related to movement of the gating particles of the sodium channels.Nature (London) 242:459–461

  3. Armstrong, C.M., Bezanilla, F. 1977. Inactivation of the sodium channel. II. Gating current experiments.J. Gen. Physiol. 70:567–590

  4. Armstrong, C.M., Gilly, W.F. 1979. Fast and slow steps in the activation of sodium channels.J. Gen. Physiol. 74:691–711

  5. Baumann, C. 1978. The equilibrium between metarhodopsin I and metarhodopsin II in the isolated frog retina.J. Physiol. (London) 279:71–80

  6. Bezanilla, F., Taylor, R.E. 1978. Temperature effects on gating currents in the squid giant axon.Biophys. J. 23:479–484

  7. Chiu, S.Y., Mrose, H.E., Ritchie, J.M. 1979. Anomalous temperature dependence of the sodium conductance in rabbit nerve compared with frog nerve.Nature (London) 279:327–328

  8. Collins, C.A., Rojas, E. 1982. Temperature dependence of the sodium channel gating kinetics in the node of Ranvier.Q. J. Expt. Physiol. 67:41–55

  9. Conti, F., Fioravanti, R., Segal, J.R., Stühmer, W. 1982. Pressure dependence of the sodium currents of squid giant axon.J. Membrane Biol. 69:23–34

  10. Conti, F., Inoue, I., Kukita, F., Stühmer, W. 1984. Pressure dependence of sodium gating currents in the squid giant axon.Eur. Biophys. J. 11:137–147

  11. de Haas, V. 1987. Personal computers for stimulus generation, data acquisition and analysis in electrophysiological experiments.Pfluegers Arch. 408:R85

  12. Drouin, H., Neumcke, B. 1974. Specific and unspecific charges at the sodium channels of the nerve membrane.Pfluegers Arch. 351:207–229

  13. Dubois, J.M., Schneider, M.F. 1982. Kinetics of intramembrane charge movement and sodium current in frog node of Ranvier.J. Gen. Physiol. 79:571–602

  14. Dudel, J., Rüdel, R. 1970. Voltage and time dependence of excitatory sodium current in cooled sheep Purkinje fibres.Pfluegers Arch. 315:136–158

  15. Edmonds, D.T. 1987. A comparison of sodium channel kinetics in the squid axon, the frog node and the frog node with BTX using the “silent gate” model.Eur. Biophys. J. 15:27–33

  16. Frankenhaeuser, B., Moore, L.E. 1963. The effect of temperature on the sodium and potassium permeability changes in myelinated nerve fibres ofXenopus laevis.J. Physiol. (London) 169:431–437

  17. Grahame, D.C. 1947. The electrical double layer and the theory of electrocapillarity.Chem. Rev. 41:441–501

  18. Horn, R., Vandenberg, C.A. 1984. Statistical properties of single sodium channels.J. Gen. Physiol. 84:505–534

  19. Howarth, J.V. 1975. Heat production in non-myelinated nerves.Phil. Trans. R. Soc. London B 270:425–432

  20. Jennrich, R.I., Ralston, M.L. 1979. Fitting nonlinear models to data.Annu. Rev. Biophys. Bioeng. 8:195–238

  21. Jonas, P., Vogel, W. 1988. Temperature dependence of asymmetry currents in peripheral nerve.Pfluegers Arch. 411:R162

  22. Kimura, J.E., Meves, H. 1979. The effect of temperature on the asymmetrical charge movement in squid giant axons.J. Physiol. (London) 289:479–500

  23. Kniffki, K.-D., Siemen, D., Vogel, W. 1981. Development of sodium permeability inactivation in nodal membranes.J. Physiol. (London) 313:37–48

  24. Lax, E. (editor) 1967. Taschenbuch für Chemiker und Physiker. Band I. Makroskopische physikalisch-chemische Eigenschaften. p. 627. Springer, Berlin

  25. Marshall, A.G. 1978. Biophysical Chemistry. Principles, Techniques, and Applications. Wiley, New York

  26. Matteson, D.R., Armstrong, C.M. 1982. Evidence for a population of sleepy sodium channels in squid axon at low temperature.J. Gen. Physiol. 79:739–758

  27. Meves, H., Vogel, W. 1977. Inactivation of the asymmetrical displacement current in giant axons ofLoligo forbesi.J. Physiol. (London) 267:377–393

  28. Neumcke, B., Nonner, W., Stämpfli, R. 1976. Asymmetrical displacement current and its relation with the activation of sodium current in the membrane of frog myelinated nerve.Pfluegers Arch. 363:193–203

  29. Nonner, W. 1969. A new voltage clamp method for Ranvier nodes.Pfluegers Arch. 309:176–192

  30. Nonner, W. 1979. Effects ofLeiurus scorpion venom on the “gating” current in myelinated nerve.Adv. Cytopharmacol. 3:345–352

  31. Nonner, W. 1980. Relations between the inactivation of sodium channels and the immobilization of gating charge in frog myelinated nerve.J. Physiol. (London) 299:573–603

  32. Nonner, W., Rojas, E., Stämpfli, R. 1975. Displacement currents in the node of Ranvier. Voltage and time dependence.Pfluegers Arch. 354:1–18

  33. Nonner, W., Rojas, E., Stämpfli, R. 1978. Asymmetrical displacement currents in the membrane of frog myelinated nerve: Early time course and effects of membrane potential.Pfluegers Arch. 375:75–85

  34. Pfeil, W., Privalov, P.L. 1976. Thermodynamic investigations of proteins. III. Thermodynamic description of lysozyme.Biophys. Chem. 4:41–50

  35. Sachs, L. 1984. Angewandte Statistik. Anwendung statistischer Methoden. p. 330. Springer, Berlin

  36. Schauf, C.L., Bullock, J.O. 1979. Modifications of sodium channel gating inMyxicola giant axons by deuterium oxide, temperature, and internal cations.Biophys. J. 27:193–208

  37. Schwarz, J.R. 1986. The effect of temperature on Na currents in rat myelinated nerve fibres.Pfluegers Arch. 406:397–404

  38. Schwarz, W. 1979. Temperature experiments on nerve and muscle membranes of frogs. Indications for a phase transition.Pfluegers Arch. 382:27–34

  39. Tanguy, J., Yeh, J.Z. 1988. Batrachotoxin uncouples gating charge immobilization from fast Na inactivation in squid giant axons.Biophys. J. 54:719–730

  40. Tsien, R.W., Noble, D. 1969. A transition state theory approach to the kinetics of conductance changes in excitable membranes.J. Membrane Biol. 1:248–273

  41. Vogel, W. 1974. Calcium and lanthanum effects at the nodal membrane.Pfluegers Arch. 350:25–39

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jonas, P. Temperature dependence of gating current in myelinated nerve fibers. J. Membrain Biol. 112, 277–289 (1989). https://doi.org/10.1007/BF01870958

Download citation

Key Words

  • myelinated nerve fiber
  • gating current
  • temperature