Skip to main content
Log in

Voltage-dependent channel formation by rods of helical polypeptides

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The voltage-dependence of channel formation by alamethicin and its natural analogues can be described by a dipole flip-flop gating model, based on electric field-induced transbilayer orientational movements of single molecules. These field-induced changes in orientation result from the large permanent dipole moment of alamethicin, which adopts α-helical conformation in hydrophobic medium. It was, therefore, supposed that the only structural requirement for voltage-dependent formation of alamethicin-type channels might be a rigid lipophilic helical segment of minimum length.

In order to test this hypothesis we synthesized a family of lipophilic polypeptides—Boc-(Ala-Aib-Ala-Aib-Ala) n -OMe,n=1–4—which adopt α-helical conformation forn=2–4 and studied their interaction with planar lipid bilayers. Surprisingly, despite their large difference in chain length, all four polypeptides showed qualitatively similar behavior. At low field strength of the membrane electric field these polypeptides induce a significant, almost voltage-independent increase of the bilayer conductivity. At high field strength, however, a strongly voltage-dependent conductance increase occurs similar to that observed with alamethicin. It results from the opening of a multitude of ion translocating channels within the membrane phase.

The steady-state voltage-dependent conductance depends on the 8th–9th power of polypeptide concentration and involves the transfer of 4–5 formal elementary charges. From the power dependences on polypeptide concentration and applied voltage of the time constants in voltage-jump current-relaxation experiments, it is concluded that channels could be formed from preexisting dodecamer aggregates by the simultaneous reorientation of six formal elementary charges. Channels exhibit large conductance values of several nS, which become larger towards shorter polypeptide chain length. A mean channel diameter of 19 Å is estimated corresponding roughly to the lumen diameter of a barrel comprised of 10 α-helical staves. Similar to experiments with the N-terminal Boc-derivative of alamethicin we did not observe the burst sequence of nonintegral conductance steps typical of natural (N-terminal Ac-Aib)-alamethicin. Saturation in current/voltage curves as well as current inactivation in voltage-jump current-relaxation experiments are found. This may be understood by assuming that channels are generated as dodecamers but, while reaching the steady state, reduce their size to that of an octamer or nonamer. We conclude that the overall behavior of these synthetic polypeptides is very similar to that of alamethicin. They exhibit the same concentration and voltage-dependences but lack the stabilizing principle of resolved channel states characteristic of alamethicin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, O.S., Muller, R.U. 1982. Monazomycin-induced single channels: I. Characterization of the elementary conductance events.J. Gen. Physiol. 80:403–426

    Google Scholar 

  • Boheim, G. 1974. Statistical analysis of alamethicin channels in black lipid membranes.J. Membrane Biol. 19:277–303

    Google Scholar 

  • Boheim, G., Hanke, W., Eibl, H. 1980. Lipid phase transition in planar bilayer membrane and its effect on carrier- and poremediated ion transport.Proc. Natl. Acad. Sci. USA 77:3403–3407

    Google Scholar 

  • Boheim, G., Hanke, W., Jung, G. 1983. Alamethicin pore formation: Voltage-dependent flip-flop of α-helix dipoles.Biophys. Struct. Mechan. 9:181–191

    Google Scholar 

  • Boheim, G., Hanke, W., Überschär, S., Eibl, H. 1982. Alamethicin pore formation in planar bilayers above and below lipid phase transition temperature.In: Transport in Biomembranes: Model Systems and Reconstitution. R. Antolini, et al., editors, pp. 135–143. Raven, New York

    Google Scholar 

  • Boheim, G., Janko, K., Leibfritz, D., Ooka, T., König, W.A., Jung, G. 1976. Structural and membrane modifying properties of suzukacillin, a peptide atibiotic related to alamethicin. Part B: Pore formation in black lipid films.Biochim. Biophys. Acta 433:182–199

    Google Scholar 

  • Boheim, G., Kolb, H.A. 1978. Analysis of the multi-pore system of alamethicin in a lipid membrane: I. Voltage-jump current-relaxation experiments.J. Membrane Biol. 38:99–150

    Google Scholar 

  • Bosch, R. 1984. Röntgenstrukturanalysen und vergleichende Studies von Alamethicin-Segmenten mit β-Turns, 3 110 - und 3 10 -, sowie α-Helices. Ph.D. Thesis. University of Tübingen, Tübingen

    Google Scholar 

  • Bosch, R., Jung, G., Schmitt, H., Sheldrick, G.M., Winter, W. 1984. Peptide structures of the alamethicin sequence: The C-terminal α/310-helical nonapeptide and two pentapeptides with opposite 310-helicity.Angew. Chem. Int. Ed. Engl. 23:450–453

    Google Scholar 

  • Bosch, R., Jung, G., Schmitt, H., Winter, W. 1985a. Crystal structure of the α-helical undecapeptide Boc-l-Ala-Aib-Ala-Aib-Ala-Glu(OBzl)-Ala-Aib-Ala-Aib-Ala-OMe.Biopolymers 24:961–978

    Google Scholar 

  • Bosch, R., Jung, G., Schmitt, H., Winter, W. 1985b. Crystal structure of Boc-Leu-Aib-Pro-Val-Aib-Aib-Glu(OBzl)-Gln-Phl·H2O, the C-terminal nonapeptide of the voltage-dependent ionophore alamethicin.Biopolymers 24:979–999

    Google Scholar 

  • Bosch, R., Jung, G., Winter, W. 1983. Structure of the 310-helical pentapeptide Boc-Aib-l-Ala-Aib-l-Ala-Aib-OMe ·2 H2O.Acta Crystallogr. Sect. C 39:776–778

    Google Scholar 

  • Brückner, H., Graf, H., Bokel, M. 1984. Paracelsin: Characterization by NMR spectroscopy and circular dichroism, and hemolytic properties of a peptaibol antibiotic from the cellulolytically active moldTrichoderma reesei. Part B.Experientia 40:1189–1197

    Google Scholar 

  • Brückner, H., Jung, G. 1982. Synthesis ofl-Pro-Leu-Aib-Aib-Gln-Valol and proof of identity with the isolated C-terminal fragment of trichotoxin A40.Liebigs Ann. Chem. 1982:1677–1699

    Google Scholar 

  • Brückner, H., König, W.A., Aydin, M., Jung, G. 1985. Trichotoxin A40. Purification by counter current distribution and sequencing of isolated fragments.Biochim. Biophys. Acta 827:51–62

    Google Scholar 

  • Brückner, H., Nicholson, G.J., Jung, G., Kruse, K., König, W.A. 1980. Gas chromatographic determination of the configuration of isovaline in antiamoebin, samarosporin (emerimicin IV), stilbellin, suzukacillins and trichotoxins.Chromatographia 13:209–214

    Google Scholar 

  • Brückner, H., Przybylski, M. 1984. Isolation and structural characterization of polypeptide antibiotics of the peptaibol class by HPLC with FD and FAB mass spectrometry.J. Chromat. 296:263–275

    Google Scholar 

  • Butters, T., Hütter, P., Jung, G., Pauls, N., Schmitt, H., Sheldrick, G.M., Winter, W. 1981. On the structure of the helical N-terminus in alamethicin-α-helix or 310-helix?Angew. Chem. Int. Ed. Engl. 20:889–890

    Google Scholar 

  • Davis, P.J., Fleming, B.D., Coolbear, K.P., Keough, K.M.W. 1981. Gel to liquid-crystalline transition temperatures of water dispersions of two pairs of positional isomers of unsaturated mixed-acid phosphatidylcholines.Biochemistry 20:3633–3636

    Google Scholar 

  • Edmonds, D.T. 1980. Membrane ion channels and ionic hydration energies.Proc. R. Soc. London B 211:51–62

    Google Scholar 

  • Eisenberg, M., Hall, J.E., Mead, C.A. 1973. The nature of the voltage-dependent conductance induced by alamethicin in black lipid membranes.J. Membrane Biol. 14:143–176

    Google Scholar 

  • Finkelstein, A., Holz, R. 1973. Aqueous pores creasted in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B.In: Membranes. Vol. 2. Lipid Bilayers and Antibiotics. G. Eisenman, editor, pp. 377–408. M. Dekker, New York

    Google Scholar 

  • Fox, R.O., Richards, F.M. 1982. A voltage-gated ion channel model inferred from crystal structure of alamethicin at 1.5 Å resolution.Nature (London) 300:325–330

    Google Scholar 

  • Gordon, L.G.M., Haydon, D.A. 1972. The unit conductance channel of alamethicin.Biochim. Biophys. Acta 255:1014–1018

    Google Scholar 

  • Hall, J.E., Vodyanoy, I., Balasubramanian, T.M., Marshall, G.R. 1984. Alamethicin—A rich model for channel behavior.Biophys. J. 45:233–247

    Google Scholar 

  • Hanke, W., Boheim, G. 1980. The lowest conductance state of the alamethicin pore.Biochim. Biophys. Acta 596:456–462

    Google Scholar 

  • Hanke, W., Methfessel, C., Wilmsen, H.-U., Katz, E., Jung, G., Boheim, G. 1983. Melittin and a chemically modified trichotoxin form alamethicin-type multi-state pores.Biochim. Biophys. Acta 727:108–114

    Google Scholar 

  • Heyer, E.J., Muller, R.U., Finkelstein, A. 1976. Inactivation of monazomycin-induced voltage-dependent conductance in thin lipid membranes: II. Inactivation produced by monazomycin transport through the membrane.J. Gen. Physiol. 67:731–748

    Google Scholar 

  • Hol, W.G.J. 1985. The role of the α-helix dipole in protein function and structure.Prog. Biophys. Molec. Biol. 45:149–195

    Google Scholar 

  • Hol, W.G.J., Duijnen, P.T. van, Berendsen, H.J.C. 1978. The α-helix dipole and the properties of proteins.Nature (London) 273:443–446

    Google Scholar 

  • Hol, W.G.J., Halie, L.M., Sander, C. 1981. Dipoles of the α-helix and β-sheet: Their role in protein folding.Nature (London) 294:532–536

    Google Scholar 

  • Jung, G., Becker, G., Schmitt, H., Voges, K.-P., Boheim, G., Griesbach, S. 1983a. Voltage-gated membrane pores are formed by a flip-flop of α-helical polypeptides.In: Peptides, Structure and Function. V.J. Hruby, and D.H. Rich, editors. pp. 491–494. Pierce Chemical Co., Rockford, Ill.

    Google Scholar 

  • Jung, G., Bosch, R., Katz, E., Schmitt, H., Voges, K.-P., Winter, W. 1983b. Stabilizing effects of 2-methylalanine residues on β-turns and α-helices.Biopolymers 22:241–246

    Google Scholar 

  • Jung, G., Dubischar, N., Leibfritz, D. 1975. Solvent and temperature induced conformational changes of alamethicin, a13C NMR and circular dichroism study.Eur. J. Biochem. 54:395–409

    Google Scholar 

  • Jung, G., Katz, E., Schmitt, H., Voges, K.-P., Menestrina, G., Boheim, G. 1983c. Conformational requirements for the potential dependent pore formation of the peptide antibiotics alamethicin, suzukacillin and trichotoxin.In: Physical Chemistry of Transmembrane Ion Motions. G. Spach, editor. pp. 349–357. Elsevier, Amsterdam

    Google Scholar 

  • Katz, E., Aydin, M., Lucht, N., König, W.A., Ooka, T., Jung, G. 1985. Sequence and conformation of suzukacillin A.Liebigs Ann. Chem. 1985:1041–1062

    Google Scholar 

  • Kleinberg, M.E., Finkelstein, A. 1984. Single-length and double-length channels formed by nystatin in lipid bilayer membranes.J. Membrane Biol. 80:257–269

    Google Scholar 

  • Marty, A., Finkelstein, A. 1975. Pores formed in lipid bilayer membranes by nystatin. Differences in its one-sided and two-sided action.J. Gen. Physiol. 65:515–526

    Google Scholar 

  • Mathew, M.K., Balaram, P. 1983a. Alamethicin and related membrane channel forming polypeptides.Mol. Cell. Biochem. 50:47–65

    Google Scholar 

  • Mathew, M.K., Balaram, P. 1983b. A dipole helix model for alamethicin and related transmembrane channels.FEBS Lett. 157:1–5

    Google Scholar 

  • McIntosh, T.J., Ting-Beall, H.P., Zampighi, G. 1982. Alamethicin induced changes in lipid bilayer morphology.Biochim. Biophys. Acta 685:51–60

    Google Scholar 

  • Montal, M., Mueller P. 1972. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties.Proc. Natl. Acad. Sci. USA 69:3561–3566

    Google Scholar 

  • Mueller, P. 1976. Molecular aspects of electrical excitation in lipid bilayers and cell membranes.Horizons Biochem. Biophys. 2:230–284

    Google Scholar 

  • Mueller, P., Rudin, D.O. 1968. Action potentials induced in bimolecular lipid membranes.Nature (London) 217:713–719

    Google Scholar 

  • Muller, R.U., Andersen, O.S. 1982. Monazomycin-induced single channels. II. Origin of the voltage dependence of the macroscopic conductance.J. Gen. Physiol. 80:427–449

    Google Scholar 

  • Muller, R.U., Finkelstein, A. 1972. Voltage-dependent conductance induced in thin lipid membranes by monazomycin.J. Gen. Physiol. 60:263–284

    Google Scholar 

  • Nakayama, H., Furihata, K., Seto, H., Otake, N. 1981. Structure of monazomycin, a new ionophorous antibiotic.Tetrahedron Lett. 22:5217–5220

    Google Scholar 

  • Rinehart, K.L., Cook, J.C., Meng, H., Olson, K.L., Pandey, R.C. 1977. Mass spectrometric determination of molecular formulas for membrane-modifying antibiotics.Nature (London) 269:832–833

    Google Scholar 

  • Rizzo, V., Schwarz, G., Voges, K.-P., Jung, G. 1985. Molecular shape and dipole moment of alamethicin-like synthetic peptides.Eur. Biophys. J. 12:67–73

    Google Scholar 

  • Robinson, R.A., Stokes, R.H. 1959. Electrolyte Solutions. Butterworth, London

    Google Scholar 

  • Roy, G. 1975. Properties of the conductance induced in lecithin bilayer membranes by alamethicin.J. Membrane Biol. 24:71–85

    Google Scholar 

  • Schmitt, H., Jung, G. 1985a. Total synthesis of the α-helical eicosapeptide antibiotic alamethicin.Liebigs Ann. Chem. 1985:321–344

    Google Scholar 

  • Schmitt, H., Jung, G. 1985b.13C NMR spectroscopic control of the synthesis of Alamethicin F30 and its segments.Liebigs Ann. Chem. 1985:345–364

    Google Scholar 

  • Schmitt, H., Winter, W., Bosch, R., Jung, G. 1982. The α-helical conformation of the undecapeptide Boc-l-Ala-(Aib-Ala)2-Glu(OBzl)-Ala-(Aib-Ala)2-OMe: Synthesis, X-ray crystal structure, and conformation in solution.Liebigs Ann. Chem. 1982:1304–1321

    Google Scholar 

  • Schwarz, G., Savko, P. 1982. Structural and dipolar properties of the voltage dependent pore former alamethicin in octanol/dioxane.Biophys. J. 39:211–219

    Google Scholar 

  • Schwarz, G., Savko, P., Jung, G. 1983. Solvent dependent structural features of the membrane active peptide trichotoxin A40 as reflected in its dielectric dispersion.Biochim. Biophys. Acta 718:419–428

    Google Scholar 

  • Spach, G., Trudelle, Y., Heitz, F. 1983. Peptides as channelmaking ionophores: Conformational aspects.Biopolymers 22:403–407

    Google Scholar 

  • Urry, D.W., Bradley, R.J., Ohnishi, T. 1978. Characterization of a synthetic, voltage-dependent, cation-selective transmembrane channel.Nature (London) 274:382–383

    Google Scholar 

  • Vodyanoy, I., Hall, J.E., Balasubramanian, T.M., Marshall, G.R. 1982. Two purified fractions of alamethicin have different conductance properties.Biochim. Biophys. Acta 684:53–58

    Google Scholar 

  • Voges, K.-P. 1985. Zur Eintauchtiefe helikaler Tryptophanyl-Heneikosapeptide in Membranen: Synthese, NMR, CD und Fluoreszenz. Thesis, University of Tübingen, Tübingen

    Google Scholar 

  • Yantorno, R.E., Takashima, S., Mueller, P. 1982. Dipole moment of alamethicin as related to voltage-dependent conductance in lipid bilayers.Biophys. J. 38:105–110

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menestrina, G., Voges, KP., Jung, G. et al. Voltage-dependent channel formation by rods of helical polypeptides. J. Membrain Biol. 93, 111–132 (1986). https://doi.org/10.1007/BF01870804

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870804

Key Words

Navigation