Advertisement

The Journal of Membrane Biology

, Volume 64, Issue 1–2, pp 1–9 | Cite as

Role of lipids in theNeurospora crassa membrane: IV. Biochemical and electrophysiological changes caused by growth on phytanic acid

  • Kenneth J. Friedman
  • David Glick
Articles

Summary

Neurospora crassa straincel, which is deficient in fatty acid synthesis, was grown with phytanic acid supplementation. The temperature dependence of membrane potential is increased by growth on phytanic acid. A temperature change of 40°C produces a change of 184 mV in phytanic acid-grown cells as compared to a 50 mV change forcel grown on palmitic acid or wild-type. Membrane resistance (measured as DC input resistance) of phytanic acid-grown cells did not differ fromcel grown on palmitic acid or wild-type. Lipid analysis ofcel grown on phytanic acid revealed ∼7 mole percent phytanic acid incorporation into phospholipids, no change in phospholipid base composition, a reduction of ergosterol content from 80 to 30 percent, and the induction of β sitosterol, a sterol not usually present inNeurospora. β sitosterol accounted for ∼60 percent of the sterol present. Incorporation of 7 mole percent phytamic acid into phospholipids lowers the phase transition temperature by ∼5°C, and decreases the heat content of the phase transition (ΔH) slightly. Results are discussed in relation to Refsum's disease, a human neurological disorder associated with high plasma levels of phytanic acid. It is proposed that high intracellular phytanic acid concentration induces novel sterol synthesis and that the incorporation of the novel sterol into the membrane is responsible for the increased temperature sensitivity of membrane potential. The excitable membrane deficits observed in patients with Refsum's disease may also be explained by such a mechanism.

Key words

membrane potential fatty acids sterols β sitosterol Refsum's disease phospholipids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blok, M.C., Deenan, L.L.M. van, Geir, J. de. Op den Kamp, A.F., Verkleij, A.J. 1977. Some aspects of lipid-phase transition on membrane permeability and lipid protein association.In: Biochemistry of Membrane Transport. G. Semenza and E. Carafoli, editors. pp. 40–46. Springer-Verlag, New YorkGoogle Scholar
  2. Brody, S., Allan, B. 1972. The effects of branched chain fatty acid incorporation intoNeurospora crassa membranes.J. Supramol. Struct. 1:125–134PubMedGoogle Scholar
  3. Christie, W.W. 1973. Lipid Analysis. Pergamon Press, New YorkGoogle Scholar
  4. Claret, M., Garay, R., Giraud, F. 1978. The effect of membrane cholesterol on the sodium pump in red blood cells.J. Physiol. (London) 274:247–263Google Scholar
  5. Doizaki, W.M., Zieve, L. 1963. Quantitative estimation of some phosphatides and their hydrolysis products by thin layer chromatography.Proc. Soc. Exp. Biol. Med. 133:91–94Google Scholar
  6. Elovson, J. 1975. Purification and properties of the fatty acid synthetase complex fromNeurospora crassa and the nature of thefas mutation.J. Bacteriol. 124:524–533PubMedGoogle Scholar
  7. Farias, R.N., Bloj, B., Morero, R.D., Sineriz, F., Trucco, R.E. 1975. Regulation of allosteric membrane-bound enzymes through changes in membrane lipid composition.Biochim. Biophys. Acta 415:231–251PubMedGoogle Scholar
  8. Fischer, F.G., Markl, G., Honel, H., Rudiger, W. 1962. Einbau von Essigsäure und Mevalonsäure (2-14C) in Chlorophyll, Sterine und Carotinoide von Gerstenkeimlingen.Justus Liebigs Ann. Chem. 657:199–212Google Scholar
  9. Friedman, K.J. 1977a. Role of lipids in theNeurospora crassa membrane: I. Influence of fatty acid composition on membrane lipid phase transitions.J. Membrane Biol. 32:33–47Google Scholar
  10. Friedman, K.J. 1977b. Role of lipids in theNeurospora crassa membrane: II. Membrane potential and resistance studies; the effect of altered fatty acid composition on the electrical properties of the cell membrane.J. Membrane Biol. 36:175–190Google Scholar
  11. Friedman, K.J., Glick, D. 1980. Role of lipids in theNeurospora crassa membrane: III. Lipid composition and phase transition properties of the plasma membrane, and its components.J. Membrane Biol. 54:183–190Google Scholar
  12. Haslam, J.M., Spithill, T.W., Linnane, A.W. 1973. The effects of altered membrane lipid composition on cation transport by mitochondria ofSaccharomyces cerevisiae.Biochem. J. 134:949–957PubMedGoogle Scholar
  13. Henry, S.A., Keith, A.D. 1971. Saturated fatty acid requirer ofNeurospora crassa.J. Bacteriol. 106:174–182PubMedGoogle Scholar
  14. Hubbard, S.C., Brody, S. 1975. Glycerophospholipid variation in choline and inositol auxotrophs ofNeurospora crassa.J. Biol. Chem. 250:7173–7181PubMedGoogle Scholar
  15. Jain, M.K., White, H.B. III. 1977. Long-range order in biomembranes.Adv. Lipid Res. 15:1–60PubMedGoogle Scholar
  16. Kushwaha, S.C., Kates, M. 1976. Lipid composition ofNeurospora crassa.Lipids 11:778–780PubMedGoogle Scholar
  17. MacBrinn, M.C., O'Brien, J.S. 1968. Lipid composition of the nervous system in Refsum's disease.J. Lipid Res. 9:552–561PubMedGoogle Scholar
  18. O'Brien, J.S. 1967. Cell membranes-composition, structure, function.J. Theor. Biol. 15:307–324PubMedGoogle Scholar
  19. Peter, J.B., Dromgoole, S.H., Campion, D.S., Stempel, K.E., Bowman, R.L., Andiman, R.M., Nagatomo, T. 1975. Experimental myotonia and hypocholesterolemic agents.Exp. Neurol. 49:115–122PubMedGoogle Scholar
  20. Razin, S. 1975. The mycoplasma membrane.In: Progress in Surface and Membrane Science. D.A. Cadenhead, J.F. Danielli and M.D. Rosenberg, editors. Vol. 9, pp. 257–312. Academic Press, New YorkGoogle Scholar
  21. Robertson, R.N., Thompson, T.E. 1977. The function of phospholipid polar headgroups in membranes.FEBS Lett. 76:16–19PubMedGoogle Scholar
  22. Shen, C.Y., Dyroff, D.R. 1962. Determination of phosphate in the presence of silicates by molybdenum blue method.Anal. Chem. 34:1367–1370Google Scholar
  23. Slayman, C.L. 1965. Electrical properties ofNeurospora crassa. Effects of external cations on the intracellular potential.J. Gen Physiol. 49:69–91PubMedGoogle Scholar
  24. Steinberg, D. 1972. Phytanic acid storage disease.In: The Metabolic Basis of Inherited Disease. J.B. Stanbury, J.B. Wyngaarden and D.S. Frederickson, editors. (3rd ed.) pp. 833–853. McGraw-Hill, New YorkGoogle Scholar
  25. Stephens, C.L., Shinitzky, M. 1977. Modulation of electrical activity inAplysia neurones by cholesterol.Nature (London) 270:267–268Google Scholar
  26. Stewart, P.A., Werstiuk, E.S., Vickers, J.D., Rathbone, M.P. 1977. Elevated cholesterol in tissues of chicken embryos with hereditary myotonic muscular dystophy.Exp. Neurol. 57:475–485PubMedGoogle Scholar
  27. Tsao, Y.-K., Lands, W.E. 1980. Cell growth with trans fatty acids is affected by adenosine 3′, 5′-monophosphate and membrane fluidity.Science 207:777–779PubMedGoogle Scholar
  28. Vogel, H.J. 1956. A convenient growth medium forNeurospora (Medium N.)Microb. Genet. Bull. 13:42–43Google Scholar
  29. Wang, J.H. 1970. A possible role of phospholipid in nerve excitation.Proc. Nat. Acad. Sci. USA 67:916–920PubMedGoogle Scholar
  30. Winer, N., Klachko, D.M., Baer, R.D., Langley, P.L., Burns, T.W. 1966. Myotonic response induced by inhibitors of cholesterol biosynthesis.Science 153:312–313Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1982

Authors and Affiliations

  • Kenneth J. Friedman
    • 1
  • David Glick
    • 1
  1. 1.Department of Physiology, College of Medicine and Dentistry of New JerseyNew Jersey Medical SchoolNewark

Personalised recommendations