Skip to main content
Log in

Osmotic water permeabilities of brush border and basolateral membrane vesicles from rat renal cortex and small intestine

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The osmotic water permeabilityP f of brush border (BBM) and basolateral (BLM) membrane vesicles from rat small intestine and renal cortex was studied by means of stopped-flow spectrophotometry. Scattered light intensity was used to follow vesicular volume changes upon osmotic perturbation with hypertonic mannitol solutions. A theoretical analysis of the relationship of scattered light intensity and vesicular volume justified a simple exponential approximation of the change in scattered light intensity. The rate constants extracted from fits to an exponential function were proportional to the final medium osmolarity as predicted by theory. For intestinal membranes, computer analysis of optical responses fitted well with a single-exponential treatment. For renal membranes a double-exponential treatment was needed, implying two distinct vesicle populations.P f values for BBM and BLM preparations of small intestine were equal and amount to 60 μm/sec. For renal preparations,P f values amount to 600 μm/sec for the fast component, BBM as well as BLM, and to 50 (BBM) and 99 (BLM) μm/sec for the slow component. The apparent activation energy for water permeation in intestinal membranes was 13.3±0.6 and in renal membranes, 1.0±0.3 kCal/mole, between 25 and 35°C. The mercurial sulfhydryl reagentpCMBS inhibited completely and reversibly the highP f value in renal brush border preparations. These observations suggest that in intestinal membranes water moves through the lipid matrix but that in renal plasma membranes water channels may be involved. From the highP f values of renal membrane vesicles a transcellular water permeability for proximal tubules can be calculated which amounts to ∼1 cm/sec. This value allows for an entirely transcellular route for water flow during volume reabsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bangham, A.D., De Gier, J., Greville, G.D. 1967. Osmotic properties and water permeability of phospholipid liquid crystals.Chem. Phys. Lipids 1:225–246

    Google Scholar 

  2. Berry, C.A. 1983. Water permeability and pathways in the proximal tubule.Am. J. Physiol. 245:F279-F294

    PubMed  Google Scholar 

  3. Biber, J., Stieger B., Haase, W., Murer H. 1981. A high yield preparation for rat kidney brush-border membranes.Biochim. Biophys. Acta 647:169–176

    PubMed  Google Scholar 

  4. Carpi-Medina, P., Lindemann, B., González, E., Whittembury, G. 1984. The continuous measurement of tubular volume changes in response to step changes in contraluminal osmolality.Pfluegers Arch. 400:343–348

    Google Scholar 

  5. Chong, C.S., Colbow, K. 1976. Light scattering and turbidity measurements on lipid vesicles.Biochim. Biophys. Acta 436:260–282

    PubMed  Google Scholar 

  6. Diamond, J.M. 1979. Osmotic water flow in leaky epithelia.J. Membrane Biol. 51:195–216

    Google Scholar 

  7. Eggena, P. 1972. Temperature dependence of vasopressin action on the toad bladder.J. Gen. Physiol. 59:519–533

    PubMed  Google Scholar 

  8. Farmer, R.E.L., Macey, R.I. 1970. Perturbation of red cell volume: Rectification of osmotic flow.Biochim. Biophys. Acta 196:53–65

    PubMed  Google Scholar 

  9. Fettiplace, R., Haydon, D.A. 1980. Water permeability of lipid membranes.Physiol. Rev. 60:510–550

    PubMed  Google Scholar 

  10. Fishbarg, J. 1982. The paracellular pathway in the corneal endothelium.In: The Paracellular Pathway. S.E. Bradley and E.F. Purcell, editors. pp. 307–318. Macey Foundation, New York

    Google Scholar 

  11. Ghijsen, W.E.J.M., Jong, M.D. de, Os, C.H. van 1982. ATP-dependent calcium transport and its correlation with Ca2+-ATPase activity in basolateral membranes of rat duodenum.Biochim. Biophys. Acta 689:327–336

    PubMed  Google Scholar 

  12. Green, R., Giebisch, G. 1984. Luminal hypotonicity: A driving force for fluid absorption from the proximal tubule.Am. J. Physiol. 246:F167-F174

    PubMed  Google Scholar 

  13. Hauser, H., Howell, K., Dawson, R.M.C., Bowyer, D.E. 1980. Rabbit small intestine brush border membrane preparation and lipid composition.Biochim. Biophys. Acta 602:567–577

    PubMed  Google Scholar 

  14. Hebert, S.C., Andreoli, T.E. 1982. Water movement across the mammalian cortical collecting duct.Kidney Int. 22:526–535

    PubMed  Google Scholar 

  15. Heeswijk, M.P.E. van, Geertsen, J.A.M., Os, C.H. van 1984. Kinetic properties of the ATP-dependent Ca2+ pump and the Na+/Ca2+ exchange system in basolateral membranes from rat kidney cortex.J. Membrane Biol. 79: 19–31

    Google Scholar 

  16. Heeswijk, M.P.E. van, Os, C.H. van 1984. Hydraulic conductivity of rabbit kidney brush-border membrane vesicles.J. Physiol. (London) 348:27P

    Google Scholar 

  17. Heeswijk, M.P.E. van, Os, C.H. van 1986. Water and salt permeabilities of brush border membrane vesicles from rat small intestine and kidney cortex.In: Ion Gradient-Coupled Transport. A.F. Alvarado and C.H. van Os, editors. pp. 329–332. Elsevier, Amsterdam

    Google Scholar 

  18. Hill, A. 1980. Salt-water coupling in leaky epithelia.J. Membrane Biol. 56:177–182

    Google Scholar 

  19. Kasai, M., Kanemasa, T., Fukumoto, S. 1979. Determination of reflection coefficients for various ions and neutral molecules in sarcoplasmic reticulum vesicles through osmotic volume change studied by stopped flow technique.J. Membrane Biol. 51:311–324

    Google Scholar 

  20. Kedem, O., Katchalsky, A. 1958. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes.Biochim. Biophys. Acta 27:229–246

    PubMed  Google Scholar 

  21. Koch, A.L. 1961. Some calculations on the turbidity of mitochondria and bacteria.Biochim. Biophys. Acta 51:429–441

    PubMed  Google Scholar 

  22. Koch, A.L. 1968. Theory of the angular-dependence of light scattered by bacteria and similar-sized biological objects.J. Theor. Biol. 18:133–156

    PubMed  Google Scholar 

  23. Latimer, P., Moore, D.M., Bryant, F.D. 1968. Changes in total light scattering and absorption caused by changes in particle conformation.J. Theor. Biol. 21:348–367

    PubMed  Google Scholar 

  24. Latimer, P. 1983. Photometric assay of cell shrinkage.J. Theor. Biol. 102:249–259

    Google Scholar 

  25. Macey, R.I. 1979. Transport of water and non-electrolytes across red cell membranes.In: Membrane Transport in Biology. G. Giebisch, D.C. Tosteson, and H.H. Ussing, editors. pp. 1–54. Springer, Berlin

    Google Scholar 

  26. Macey, R.I. 1984. Transport of water and urea in red blood cells.Am. J. Physiol. 246:C195-C203

    Google Scholar 

  27. Mircheff, A.K., Ives, H.E., Yee, V.J., Warnock, D.G. 1984. Na+/H+ antiporter in membrane populations resolved from a renal brush border vesicle population.Am. J. Physiol. 246:F853-F858

    Google Scholar 

  28. Mlekoday, J.H., Moore, R., Levitt, D.G. 1983. Osmotic water permeability of the human red cell.J. Gen. Physiol. 81:213–220

    PubMed  Google Scholar 

  29. Perevucnik, G., Schurtenberger, P., Lasic, D.D., Hauser H. 1985. Size analysis of biological membrane vesicles by gel filtration, dynamic light scattering and electron microscopy.Biochim. Biophys. Acta 821:169–173

    PubMed  Google Scholar 

  30. Persson, E., Spring, K.R. 1982. Gallbladder epithelial cell hydraulic permeability and volume regulation.J. Gen. Physiol. 79:481–505

    PubMed  Google Scholar 

  31. Preissig, P.A., Berry, C.A. 1985. Evidence for transcellular osmotic water flow in rat proximal tubules.Am. J. Physiol. 249:F124-F131

    PubMed  Google Scholar 

  32. Rabon, E., Takeguchi, N., Sachs, G. 1980. Water and salt permeability of gastric vesicles.J. Membrane Biol. 53:109–117

    Google Scholar 

  33. Schafer, J.A. 1984. Mechanisms coupling the absorption of solutes and water in the proximal nephron.Kidney Int. 25:708–716

    PubMed  Google Scholar 

  34. Tedeschi, H., Harris, D.L. 1958. Some observations on the photometric estimation of mitochondrial volume.Biochim. Biophys. Acta 28:392–402

    PubMed  Google Scholar 

  35. Terwilliger, T.C., Solomon, A.K. 1981. Osmotic water permeability of humen red cells.J. Gen. Physiol. 77:549–570

    Google Scholar 

  36. Verkman, A.S., Dix, J.A., Seifter, J.L. 1985. Water and urea transport in renal microvillus membrane vesicles.Am. J. Physiol. 248:F650-F655

    PubMed  Google Scholar 

  37. Welling, L.W., Welling, D.J. 1975. Surface areas of brush border and lateral cell walls in the rabbit proximal nephron.Kidney Int. 8:343–348

    PubMed  Google Scholar 

  38. Welling, L.W., Welling, D.J. 1976. Shape of epithelial cells and intercellular channels in the rabbit proximal nephron.Kidney Int. 9:385–394

    PubMed  Google Scholar 

  39. Welling, L.W., Welling, D.J., Ochs, T.J. 1983. Video measurements of basolateral membrane hydraulic conductivity in the proximal tubule.Am. J. Physiol. 245:F123-F129

    Google Scholar 

  40. Whittembury, G., Paz-Aliaga, A., Biondi, A., Carpi-Medina, P., Gonzalez, E., Linares, H. 1985. Pathways for volume flow and volume regulation in leaky epithelia.Pfluegers Arch. 405:S17-S22

    Google Scholar 

  41. Windus, D., Cohn, D., Klahr, S., Hammerman, M.R. 1984. Glutamine transport in renal basolateral vesicles from dogs with metabolic acidosis.Am. J. Physiol. 246:F78-F86

    PubMed  Google Scholar 

  42. Worman, H.J., Field, M. 1985. Osmotic water permeability of small intestinal brush-border membranes.J. Membrane Biol. 87:233–239

    Google Scholar 

  43. Yoshikawa, W., Akutsu, H., Kyogoku, Y. 1983. Light-scattering properties of osmotically active liposomes.Biochim. Biophys. Acta 735:397–406

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Heeswijk, M.P.E., van Os, C.H. Osmotic water permeabilities of brush border and basolateral membrane vesicles from rat renal cortex and small intestine. J. Membrain Biol. 92, 183–193 (1986). https://doi.org/10.1007/BF01870707

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870707

Key words

Navigation