Skip to main content
Log in

Effect of 3-phenylindole on lipophilic ion and carrier-mediated ion transport across bilayer lipid membranes

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The physical effects of 3-phenylindole, an antimicrobial compound which interacts with phospholipids, on ion transport across phosphatidylcholine-cholesterol bilayers have been investigated using three lipophilic ions and one ion-carrier complex. It was found that 3-phenylindole increased membrane electrical conductance of positively charged membrane probes and decreased electrical conductance of negatively charged probes. The enhancement of conductance detected by nonactin-K+ complex and tetraphenylarsonium+ was several orders of magnitude, whereas the suppression of conductance due to tetraphenylborate and dipicrylamine was less than a factor of ten. Presence of 3-phenylindole in aqueous phase slightly decreased adsorption of tetraphenylborate and dipicrylamine at the membrane surface. From the voltage dependence of the steady-state conductance it was shown that 3-phenylindole induced kinetic limitation of membrane transport of potassium mediated by nonactin. No such limitation was found in the case of tetraphenylarsonium+ transport. These results are shown to be consistent with the present concept of ion diffusion in membranes and the assumption that 3-phenylindole decreases the electric potential in the membrane interior. The asymmetry of the effect of 3-phenylindole on the magnitude of conductance changes for positively and negatively charged membrane permeable ions is also discussed as a reflection of the discreteness of both the adsorbed 3-phenylindole and lipid dipoles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, O.S., Feldberg, S., Nakadomari, H., Levy, S., McLaughlin, S. 1978. Electrostatic interactions among hydrophobic ions in lipid bilayer membranes.Biophys. J. 21:35–70

    PubMed  Google Scholar 

  • Andersen, O.S., Finkelstein, A., Katz, I., Cass, A. 1976. Effect of phloretin on the permeability of thin lipid membranes.J. Gen. Physiol. 67, 749–771

    Article  PubMed  Google Scholar 

  • Andersen, O.S., Fuchs, M. 1975. Potential energy barriers to ion transport within lipid bilayers.Biophys. J. 15:795–830

    PubMed  Google Scholar 

  • Barratt, M.D., Weaver, A.C. 1979. The interaction of 3,3′,4′,5-tetrachlorosalicylanilide with phosphatidylcholine bilayers.Biochim Biophys. Acta 555:337–348

    PubMed  Google Scholar 

  • Benz, R., Gisin, B.F. 1978. Influence of membrane structure on ion transport through lipid bilayer membranes.J. Membrane Biol. 40:293–314

    Google Scholar 

  • Bruner, L.J. 1975. The interaction of hydrophobic ions with lipid bilayer membranes.J. Membrane Biol. 22:125–141

    Google Scholar 

  • Cousin, J. L., Motais, R. 1978. Effect of phloretin on chloride permeability: A structure-activity study.Biochim. Biophys Acta 507:531–538

    Google Scholar 

  • Dekker, W.H., Selling, H.A., Overeem, J.O. 1975. Structure-activity relationships of some antifungal indoles.J. Agric. Food Chem. 23:785–791

    PubMed  Google Scholar 

  • Fischer, E., Schmidt, T. 1888. Ueber Pr. 3-Phenylindol.Berichte Deutschen Chemischen Gesellschaft 21:1811–1812

    Google Scholar 

  • Hanai, T., Haydon, D.A., Taylor, J. 1965. The variation of capacitance and conductance of biomolecular lipid membranes with area.J. Theor. Biol. 9:433–443

    PubMed  Google Scholar 

  • Haydon, D.A., Myers, V.B. 1973. Surface charge, surface dipoles and membrane conductance.Biochim. Biophys. Acta 307:429–443

    PubMed  Google Scholar 

  • Hladky, S.B. 1972. The steady-state theory of the carrier transport of ions.J. Membrane Biol. 10:67–91

    Google Scholar 

  • Hladky, S.B. 1973. The effect of stirring on the flux of carriers into black lipid membranes.Biochim. Biophys. Acta 307:261–269

    PubMed  Google Scholar 

  • Hladky, S.B. 1975. Tests of the carrier model for ion transport by nonactin and trinactin.Biochim. Biophys. Acta 375:327–349

    PubMed  Google Scholar 

  • Hladky, S.B. 1979. The carrier mechanism.In: Current Topics in Membranes and Transport. F. Bronner and A. Kleinzeller, editors. pp. 53–164. Academic Press, New York

    Google Scholar 

  • Hoppe, H.H., Kerkenaar, A., Sijpesteijn, A.K. 1976a. On the mode of action of 3-phenylindole towardsAspergillus niger.Pest. Biochem. Physiol. 6:413–421

    Google Scholar 

  • Hoppe, H.H., Kerkenaar, A., Sijpesteijn, A.K. 1976b. Interaction with phospholipids as a possible mode of action of 3-phenylindole onAspergillus niger.Pest Biochem. Physiol. 6:422–429

    Google Scholar 

  • Ketterer, B., Neumcke, B., Läuger, P. 1971. Transport mechanism of hydrophobic ions through lipid bilayer membranes.J. Membrane Biol. 5:225–245

    Google Scholar 

  • Liberman, Y.A., Topaly, V.P. 1969. Permeability of bimolecular phospholipid membranes for fat-soluble ions.Biophysics 14:477–487

    Google Scholar 

  • McClellan, A.L. 1974. Tables of Experimental Dipole Moments. Vol. 2. p. 288. Rahara Enterprises, El Cerrito (Calif.)

    Google Scholar 

  • McLaughlin, S. 1973. Salicylates and phospholipid bilayer membranes.Nature (London) 243:234–236

    Google Scholar 

  • McLaughlin, S., Eisenberg, M. 1975. Antibiotics and membrane biology.Annu. Rev. Biophys. Bioeng. 4:335–366

    PubMed  Google Scholar 

  • McLaughlin, S., Dilger, J.P. 1980. Transport of protons across membranes by weak acids.Physiol. Rev. 60:825–863

    PubMed  Google Scholar 

  • Mueller, P., Rudin, D.O., Tien, H., Wescott, W.C. 1963. Methods for the formation of single bimolecular lipid membranes in aqueous solution.J. Phys. Chem. 67:534–535

    Google Scholar 

  • Owen, J.D. 1974. The effect of phloretin on the potassium conductance inAplysia giant neurons.J. Membrane Biol. 16:65–78

    Google Scholar 

  • Pickar, A.D., Benz, R. 1978. Transport of oppositely charged lipophilic probe ions in lipid bilayer membranes having various structures.J. Membrane Biol. 44:353–376

    Google Scholar 

  • Sinha, B. 1981. Physical effects of 3-phenylindole on ion transport across bilayer lipid membranes. Ph. D. Dissertation. Portland State University, Portland, Oregon

    Google Scholar 

  • Smejtek, P., Paulis-Illangasekare, M. 1979a. Modification of ion transport in lipid bilayer membranes in the presence of 2,4-dichlorophenoxyacetic acid (2,4-D). I. Enhancement of cationic conductance and changes of the kinetics of nonactin-mediated transport of potassium.Biophys. J. 26:441–466

    PubMed  Google Scholar 

  • Smejtek, P., Paulis-Illangasekare, M. 1979b. Modification of ion transport in lipid bilayer membranes in the presence of 2,4-dichlorophenoxyacetic acid (2,4-D). II. Suppression of tetraphenylborate conductance and changes of interfacial potentials.Biophys. J. 26:467–488

    PubMed  Google Scholar 

  • Stark, G., Benz, R. 1971. The transport of potassium through lipid bilayer membranes by the neutral carriers valinomycin and monactin.J. Membrane Biol. 5:133–153

    Google Scholar 

  • Szabo, G. 1974. Dual mechanism for the action of cholesterol on membrane permeability.Nature (London) 257:47–49

    Google Scholar 

  • Szabo, G. 1976. The influence of dipole potentials on the magnitude and the kinetics of ion transport in lipid bilayer membranes.In: Extreme Environments: Mechanisms of Microbial Adaptation. M.R. Heinrich, editor. pp. 321–348. Academic Press, New York

    Google Scholar 

  • Szabo, G., Eisenman, G., McLaughlin, S.G.A., Krasne, S. 1972. Ionic probes of membrane structures.Ann. N. Y. Acad. Sci. 193:273–290

    PubMed  Google Scholar 

  • Wang, C.C., Bruner, L.J. 1978a. Dielectric saturation of the aqueous boundary layer adjacent to charged bilayer membranes.J. Membrane Biol. 38:311–331

    Google Scholar 

  • Wang, C.C., Bruner, L.J. 1978b. Evidence for a discrete charge effect within lipid bilayer membranes.Biophys. J. 24:749–764

    PubMed  Google Scholar 

  • Wieth, J.O., Dalmark, M., Gunn, R.Z., Tosteson, D.C. 1973. The transfer of monovalent inorganic anions through the red cell membrane.In: Erythrocytes, Thrombocytes, Leucocytes. E. Gerlach, K. Moses, E. Deutsch, and W. Wilmanns, editors. pp. 71–76. Georg Thieme Verlag KG, Stuttgart

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinha, B.A., Smejtek, P. Effect of 3-phenylindole on lipophilic ion and carrier-mediated ion transport across bilayer lipid membranes. J. Membrain Biol. 71, 119–130 (1983). https://doi.org/10.1007/BF01870680

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870680

Key Words

Navigation