Skip to main content
Log in

Isolation and partial characterization of platelet α-granule membranes

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Porcine α-granules, prepared by a modification of pre-existing methods, were found to be essentially homogeneous by transmission electron microscopy. Freeze-fractured samples of isolated granules revealed numerous intramembranous particles on the EF (exoplasmic fracture) surface and to a lesser extent on the PF (protoplasmic fracture) surface whereas the PS (protoplasmic) surface was relatively smooth. The granules appear to be sealed, as evidenced by: a) the retention of their electron dense core material; b) the inability of impermeant labels to react with the granule contents, and c) the finding that the intragranular proteins are refractory to mild hydrolysis by externally added proteases. Membranes were isolated by alkali extraction of the granules and used for biochemical characterization. Approximately 87% of the protein, but only insignificant amounts of phospholipid were removed by this procedure, which yielded membrane vesicles devoid of the dense core. The membranes contain one major and several minor polypeptides of molecular weights ranging from 28,000 to 230,000, as determined by polyacrylamide gel electrophoresis. The major polypeptide contains carbohydrate residues. The exposure of specific proteins on the cytoplasmic surface of the granule membrane was determined by a combination of surface-specific labeling and proteolysis of intact granules, followed by membrane isolation and analysis. In sealed granules, only a limited number of bands are modified by the reagents whereas most of them are affected following granule lysis, indicating asymmetry in their transmembrane disposition. The fraction eluted by alkali extraction was also analyzed and found to contain nine major polypeptides of molecular weights ranging from 230,000 to 43,000. These are compared to the weights of the macromolecules believed to be secreted from α-granules, as determined by radioimmunological techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akkerman, J.W., Niewiarowski, S., Holmsen, H. 1980. Identification of granular heterogeneity in blood platelets by controlled cell lysis.Thromb. Res. 17:249–254

    PubMed  Google Scholar 

  2. Allington, M.J. 1967. Fibrinogen and fibrin degradation products and the clumping of staphylococci by serum.Br. J. Haematol. 13:550–556

    PubMed  Google Scholar 

  3. Antoniades, H.N., Scher, C.D., Stiles, C.D. 1979. Purification of human platelet-derived growth factor.Proc. Natl. Acad. Sci. USA 76:1809–1813

    PubMed  Google Scholar 

  4. Bartlett, G.R. (1959). Phosphorus assay in column chromatography.J. Biol. Chem. 234:466–468

    PubMed  Google Scholar 

  5. Bentfield, M.E., Bainton, D.F. 1975. Cytochemical localization of lysosomal enzymes in rat megakaryocytes and platelets.J. Clin. Invest. 56:1635–1639

    PubMed  Google Scholar 

  6. Berl, S., Puszkin, S., Nicklas, W.J. 1973. Actomyosin-like protein in brain.Science 179:441–446

    PubMed  Google Scholar 

  7. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72:248–254

    PubMed  Google Scholar 

  8. Broekman, M.J., Westmoreland, N.P., Cohen, P. 1974. An improved method for isolating α-granules and mitochondria from human platelets.J. Cell Biol. 60:507–519

    PubMed  Google Scholar 

  9. Cabana, C., Hugon, J.S., Lamy, F. 1981. Freeze-fracture and deep-etching studies on zymogen-granule membranes of rat pancreas.Cell Tissue Res. 214:355–362

    PubMed  Google Scholar 

  10. Carty, S.E., Johnson, R.G., Scarpa, A. 1981. Serotonin transport in isolated platelet granules.J. Biol. Chem. 256:11244–11250

    Google Scholar 

  11. DaPrada, M., Jakabova, M., Luscheer, E.F. 1976. Subcellular localization of the heparin-neutralizing factor in blood platelets.J. Physiol. (London) 257:495–501

    Google Scholar 

  12. DaPrada, M., Pletscher, A., Tranzer, J.P. 1971. Storage of ATP and 5-HT in blood platelets of guinea pigs.J. Physiol. (London) 217:679–688

    Google Scholar 

  13. DaPrada, M., Pletscher, A., Tranzer, J.P., Knuchel, H. 1967. Subcellular localization of 5-hydroxytryptamine and histamine in blood platelets.Nature (London) 216:1315–1317

    Google Scholar 

  14. Etemadi, A.H. 1980. Membrane asymmetry. A survey and critical appraisal of the methodology. I. Methods for assessing the asymetric orientation and distribution of proteins.Biochim. Biophys. Acta 604:347–422

    PubMed  Google Scholar 

  15. Fraker, P.S., Speck, J.C., Jr. 1978. Protein and cell membrane iodinations with a sparingly soluble chloramide, 1,3,4,6-tetrachloro-3a, 6a-diphenylglycoluril.Biochem. Biophys. Res. Commun. 80:849–857

    PubMed  Google Scholar 

  16. Fukami, M.H., Bauer, J.S., Stewart, G.J., Salganicoff, L. 1978. An improved method for the isolation of dense storage granules from human platelets.J. Cell Biol. 77:389–399

    PubMed  Google Scholar 

  17. Gerrard, J.M., Phillips, D.R., White, J.G. 1978. Severe deficiency of thrombin-sensitive protein (TSP) in the gray platelet syndrome.Clin. Res. 26:503A

    Google Scholar 

  18. Ginsberg, M.H., Taylor, L., Painter, R.G. 1980. The mechanism of thrombin-induced platelet factor 4 secretion.Blood 55:661–668

    PubMed  Google Scholar 

  19. Gogstad, G.O. 1980. A method for the isolation of α-granules from human platelets.Thromb. Res. 20:669–676

    PubMed  Google Scholar 

  20. Gogstad, G.O., Hagen, J., Korsmo, R., Solum, N.O. 1981. Characterization of the proteins of isolated human platelet α-granules. Evidence for a separate α-granule pool of the glycoproteins IIb and IIIa.Biochim. Biophys. Acta 670:150–162

    PubMed  Google Scholar 

  21. Handbook of Biochemistry. 1970. H.A. Sober, editor. The Chemical Rubber Co., Cleveland, Ohio

    Google Scholar 

  22. Hardisty, R.M., Mills, D.C.B. 1972. The platelet defect associated with albinism.Ann. N.Y. Acad. Sci. 201:429–436

    PubMed  Google Scholar 

  23. Hodges, T.K., Leonard, R.T. 1974. Purification of a plasma membrane bound ATPase from plant roots.Methods Enzymol. 36:392–403

    Google Scholar 

  24. Holmsen, H., Weiss, H.J. 1972. Further evidence for a deficient storage pool of adenine nucleotides in platelets from some patients with thrombocytopathia.Blood 39:197–209

    PubMed  Google Scholar 

  25. Hubscher, G., West, G.R. 1965. Specific assays of some phosphatases in subcellular fractions of small intestinal mucosa.Nature (London) 200:799–780

    Google Scholar 

  26. James, H.L., Ganguly, D., Jackson, C.W. 1977. Characterization and origin of fibrinogen in blood platelets.Thromb. Haemostas. 38:939–951

    Google Scholar 

  27. Kaplan, D.R., Chao, F.C., Stiles, C.D., Antoniades, H.N., Scher, C.D. 1979. Platelet α-granules contain a growth factor for fibroblasts.Blood 53:1043–1052

    PubMed  Google Scholar 

  28. Kaplan, K.L., Broekman, M.J., Chernoff, A., Lesznik, G.R., Drillings, M. 1979. Platelet α-granule proteins: Studies on release and subcellular localization.Blood 53:604–613

    PubMed  Google Scholar 

  29. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature (London) 227:681–685

    Google Scholar 

  30. Levy-Toledano, S., Caen, J.P., Breton-Gorius, J., Rendu, F., Dupuy, E., Legrand, Y., Maclouf, J. 1981. Gray platelet syndrome α-granule deficiency.J. Lab. Clin. Med. 98:831–848

    PubMed  Google Scholar 

  31. Linhardt, K., Walter, K. 1963.In: Methods of Enzymatic Analysis. H. Bergmeyer, editor. pp. 783–785. Academic Press, New York

    Google Scholar 

  32. Lowden, J.A., Skomorowski, M.A., Henderson, F., Kaback, M. 1973. Automated assay of hexosaminidases in serum.Clin. Chem. (N.Y.) 19:1345–1349

    Google Scholar 

  33. McKee, P.A., Rogers, L.A., Marler, E., Hill, R.L. 1966. The subunit polypeptides of human fibrinogen.Arch. Biochem. Biophys. 116:271–279

    PubMed  Google Scholar 

  34. Moore, S., Pepper, D.S., Cash, J.D. 1975. The isolation and characterization of platelet specific α-globulin (thromboglobulin) and the detection of anti-urokinase and antiplasmin released from thrombin aggregated washed human platelets.Biochim. Biophys. Acta 379:360–369

    PubMed  Google Scholar 

  35. Nachman, R.L., Jaff, E.A. 1975. Subcellular platelet factor VIII antigen and von Willebrand factor.J. Exp. Med. 141:1101–1111

    PubMed  Google Scholar 

  36. Nurden, A.T., Kunicki, T.J., Dupuis, D., Soria, C., Caen, J.P. 1982. Specific protein and glycoprotein deficiencies in platelets from two patients with the gray platelet syndrome.Blood 59:709–718

    PubMed  Google Scholar 

  37. Pepper, D.S. 1979. Macromolecules released from platelet storage organelles.Thromb. Haemostas. 42:1667–1672

    Google Scholar 

  38. Phillips, D.R., Jennings, L.K., Prasanna, H.R. 1980. Camediated association of glycoprotein G (thrombin sensitive protein, thrombospondin) with human platelets.J. Biol. Chem. 225:11629–11632

    Google Scholar 

  39. Rendu, F., Lebret, M., Caen, J.P. 1981. Isolation of dense bodies from human blood platelets on metrizamide gradient.Thromb. Haemostas. 46:133

    Google Scholar 

  40. Salganicoff, H.L., Hebda, P.A., Yandrasitz, J., Fukami, M.H. 1975. Subcellular fractionation of pig platelets.Biochim. Biophys. Acta 385:394–411

    PubMed  Google Scholar 

  41. Steck, T.L. 1974. The organization of proteins in the human red blood cell membrane.J. Cell Biol. 62:1–19

    PubMed  Google Scholar 

  42. Taylor, D.G., Crawford, N. 1974. The subfractionation of platelet membranes by zonal centrifugation.FEBS Lett. 41:317–319

    PubMed  Google Scholar 

  43. Taylor, D.G., Mapp, R.J., Crawford, N. 1975. The identification of actin association with pig platelet membranes and granules.Biochem. Soc. Trans. 3:161–164

    PubMed  Google Scholar 

  44. Van der Meulen, J., Grinstein, S. 1982. Calcium induced lysis of platelet secretory granules.J. Biol. Chem. 257:5190–5195

    PubMed  Google Scholar 

  45. Walz, D.A., deLamo, V.Y., Wu, R., McCoy, L.E. 1980. Primary structure of human platelet factor 4.Thromb. Res. 11:893–898

    Google Scholar 

  46. White, J.G. 1979. Current concepts of platelet structure.Am. J. Clin. Pathol. 71:363–378

    PubMed  Google Scholar 

  47. Wilkins, J.A., Lin, S. 1981. Association of actin with chromaffin granule membranes and the effect of cytochalasin B on the polarity of actin filament elongation.Biochim. Biophys. Acta 642:55–66

    Google Scholar 

  48. Yamada, K.M., Olden, K. 1978. Fibronectins-adhesive glycoproteins of cell surface and blood.Nature (London) 275:179–184

    Google Scholar 

  49. Zucker, M.B., Broekman, J., Kaplan, K.L. 1979. Factor VIII-related antigen in human blood platelets. Localization and release by thrombin and collage.J. Lab. Clin. Med. 94:675–682.

    PubMed  Google Scholar 

  50. Zucker, M.B., Mosesson, M.W., Broekman, M.J., Kaplan, K.L. 1979. Release of platelet fibronectin from α-granules induced by thrombin or collagen: Lack of requirement for plasma fibronectin in ADP-induced platelet aggregationBlood 54:8–12

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van der Meulen, J., Furuya, W. & Grinstein, S. Isolation and partial characterization of platelet α-granule membranes. J. Membrain Biol. 71, 47–59 (1983). https://doi.org/10.1007/BF01870674

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870674

Key Words

Navigation