Skip to main content
Log in

Biophysical basis of glomerular permselectivity

  • Topical Review
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The mammalian glomerular capillary wall normally restricts the transmural passage of plasma proteins while offering little resistance to the filtration of water and small solutes. The basis for this selectivity has been explored extensively in recent years, through clearance measurements of endogenous (mainly albumin, transferrin, and immunoglobulins) and exogenous (horseradish peroxidase) proteins, and a variety of nonprotein polymers such as dextrans and polyvinylpyrrolidone. In conjunction with efforts to localize particulate and soluble tracers by high resolution ultrastructural techniques, such measurements have now made it possible to define the determinants of the glomerular filtration of macromolecules in terms of discrete structural barriers as well as such biophysical influences as hemodynamics and the molecular size- and charge-selective characteristics of the capillary wall.

These experimental approaches have been aided greatly by the development of theoretical models that enable investigators to describe macromolecular filtration in terms of hydrodynamic principles applied to isoporous membranes. Although the initial models failed to consider the important role of membrane fixed negative-charge characteristics in influencing protein filtration, this shortcoming has led to the recent introduction of a theoretical model that also takes this factor into consideration. The aim of this brief review is to summarize these various theoretical approaches to the understanding of glomerular permselectivity and, wherever possible, to cite specific tests of these theories based on experimental studies in humans and animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, J.L., Quinn, J.A. 1974. Restricted transport in small pores. A model for steric exclusion and hindered particle motion.Biophys. J. 14:130–150

    PubMed  Google Scholar 

  2. Arturson, G., Groth, T., Grotte, G. 1971. Human glomerular membrane porosity and filtration pressure: Dextran clearance data analyzed by theoretical models.Clin. Sci. 40:137–158

    PubMed  Google Scholar 

  3. Bennett, C.M., Glassock, R.J., Chang, R.L.S., Deen, W.M., Robertson, C.R., Brenner, B.M. 1976. Permselectivity of the glomerular capillary wall. Studies of experimental glomerulonephritis in the rat using dextran sulfate.J. Clin. Invest. 57:1287–1294

    PubMed  Google Scholar 

  4. Blau, E.B., Haas, D.E. 1973. Glomerular sialic acid and proteinuria in human renal disease.Lab. Invest. 28:477–481

    PubMed  Google Scholar 

  5. Blau, E.B., Michael, A.F. 1972. Rat glomerular glycoprotein composition and metabolism in aminonucleoside nephrosis.Proc. Soc. Expt. Biol. Med. 141:164–172

    Google Scholar 

  6. Bohrer, M.P., Baylis, C., Humes, H.D., Glassock, R.J., Robertson, C.R., Brenner, B.M. 1978. Permselectivity of the glomerular capillary wall. Facilitated filtration of circulating polycations.J. Clin. Invest. 61:72–78

    PubMed  Google Scholar 

  7. Bohrer, M.P., Baylis, C., Robertson, C.R., Brenner, B.M. 1977. Mechanism of the puromycin-induced defects in the transglomerular passage of water and macromolecules.J. Clin. Invest. 60:152–161

    PubMed  Google Scholar 

  8. Bohrer, M.P., Deen, W.M., Robertson, C.R., Brenner, B.M. 1977. Mechanism of angiotensin II — induced proteinuria in the rat.Am. J. Physiol. 233:F13-F21

    PubMed  Google Scholar 

  9. Bohrer, M.P., Deen, W.M., Robertson, C.R., Troy, J.L., Brenner, B.M. 1979. Influence of molecular configuration on the passage of macromolecules across the glomerular capillary wall.J. Gen. Physiol. 74:583–593

    PubMed  Google Scholar 

  10. Brenner, B.M., Baylis, C., Deen, W.M. 1976. Transport of molecules across renal glomerular capillaries.Physiol. Rev. 56:502–534

    PubMed  Google Scholar 

  11. Buerkert, J.E., Mor, J., Murray, B.N., Robson, A.M. 1976. Glomerular permeability in disease: A proposed role of the glomerular epithelial cell.(Abstr.) Proc. Am. Soc. Nephrol. 9:69

    Google Scholar 

  12. Carrie, B.J., Myers, B.D. 1980. Proteinuria and functional characteristics of the glomerular barrier in diabetic nephropathy.Kidney Int. 19:669–676

    Google Scholar 

  13. Caulfield, J.P., Farquhar, M.G. 1976. Distribution of anionic sites in normal and nephrotic glomerular basement membranes.(Abstr.) J. Cell Biol. 70:92a

    Google Scholar 

  14. Chang, R.L.S., Deen, W.M., Robertson, C.R., Brenner, B.M. 1975. Permselectivity of the glomerular capillary wall: III. Restricted transport of polyanions.Kidney Int. 8:212–218

    PubMed  Google Scholar 

  15. Chang, R.L.S., Deen, W.M., Robertson, C.R., Bennett, C.M., Glassock, R.J., Brenner, B.M. 1976. Permselectivity of the glomerular capillary wall. Studies of experimental glomerulonephritis in the rat using neutral dextran.J. Clin. Invest 57:1272–1286

    PubMed  Google Scholar 

  16. Chang, R.L.S., Robertson, C.R., Deen, W.M., Brenner, B.M. 1975. Permselectivity of the glomerular capillary wall to macromolecules: I. Theoretical considerations.Biophys. J. 15:861–886

    PubMed  Google Scholar 

  17. Chang, R.L.S., Ueki, I.F., Troy, J.L., Deen, W.M., Robertson, C.R., Brenner, B.M. 1975. Permselectivity of the glomerular capillary wall to macromolecules: II. Experimental studies in rats using neutral dextran.Biophys. J. 15:887–906

    PubMed  Google Scholar 

  18. De Bats, A., Gordon, A.H., Rhodes, E.L. 1974. Variations in glomerular sialic acid content in diabetes and as the result of aging.Clin. Sci. Molec. Med. 47:93–95

    Google Scholar 

  19. Deen, W.M., Bohrer, M.P., Brenner, B.M. 1979. Macromolecule transport across glomerular capillaries: Application of pore theory.Kidney Int. 16:353–365

    PubMed  Google Scholar 

  20. Deen, W.M., Bridges, C.R. 1982. Addenda and correction. Molecular charge of horseradish peroxidase.Am. J. Physiol. 242:F750

    PubMed  Google Scholar 

  21. Deen, W.M., Robertson, C.R., Brenner, B.M. 1972. A model of glomerular ultrafiltration in the rat.Am. J. Physiol. 223:1178–1183

    PubMed  Google Scholar 

  22. Deen, W.M., Satvat, B., Jamieson, J.M. 1980. Theoretical model for glomerular filtration of charged solutes.Am. J. Physiol. 238:F126-F139

    PubMed  Google Scholar 

  23. Deen, W.M., Satvat, B. 1981. Determinants of the glomerular filtration of proteins.Am. J. Physiol. 241:F162-F170

    Google Scholar 

  24. Dubois, R., Decoodt, P., Gassèe, J.P., Verniory, A., Lambert, P.P. 1975. Determination of glomerular intracapillary and transcapillary pressure gradients from sieving data: I. A mathematical model.Pfluegers Arch. 356:299–316

    Google Scholar 

  25. Eisenbach, G.M., Van Liew, J.B., Boylan, J.W. 1975. Effect of angiotensin on the filtration of protein in the rat kidney: A micropuncture study.Kidney Int. 8:80–87

    PubMed  Google Scholar 

  26. Galaske, R.G., Baldamus, C.A., Stolte, H. 1978. Plasma protein handling in the rat kidney: Micropuncture experiments in the acute heterologous phase of anti-GBM nephritis.Pfluegers Arch. 375:269–277

    Google Scholar 

  27. Gassèe, J.P. 1973. Effect of acetylcholine on glomerular sieving of macromolecules.Pfluegers Arch. 342:239–254

    Google Scholar 

  28. Gassèe, J.P., Dubois, R., Staroukine, M., Lambert, P.P. 1976. Determination of glomerular intracapillary and transcapillary pressure gradients from sieving data: III. The effects of angiotensin II.Pfluegers Arch. 367:15–24

    Google Scholar 

  29. Hardwicke, J., Cameron, J.S., Harrison, J.F., Hulme, B., Soothill, J.F. 1970.In: Proteins in Normal and Pathological Urine. Y. Manuel, J.P. Revillard, and H. Betuel, editors. pp. 111–152. University Press, Baltimore

    Google Scholar 

  30. Huss, R.E., Marsh, D.J., Kalaba, R.E. 1975. Two models of glomerular filtration rate and renal blood flow in the rat.Ann. Biomed. Eng. 3:72–99

    PubMed  Google Scholar 

  31. Lambert, P.P., Aeikens, B., Bohle, A., Hanus, F., Pegoff, S., Van Damme, M. 1982. A network model of glomerular function.Microvasc. Res. 23:99–128

    PubMed  Google Scholar 

  32. Lambert, P.P., Dubois, R., Decoodt, P., Gassèe, J.P., Verniory, A. 1975. Determination of glomerular intracapillary and transcapillary pressure gradients from sieving data: II. A physiological study in the normal dog.Pfluegers Arch. 359:1–22

    Google Scholar 

  33. Leber, P.D., Marsh, D.J. 1970. Micropuncture study of concentration and fate of albumin in rat nephron.Am. J. Physiol. 219:353–363

    Google Scholar 

  34. Lui, S., Kalant, N. 1974. Carbohydrate of the glomerular basement membrane in normal and nephrotic rats.Exp. Molec. Pathol. 21:52–62

    Google Scholar 

  35. Michael, A.F., Blau, E., Vernier, R.L. 1970. Glomerular polyanion: Alteration in aminonucleoside nephrosis.Lab. Invest. 23:649–657

    PubMed  Google Scholar 

  36. Oken, D.E., Cotes, S.C., Mende, C.W. 1972. Micropuncture study of tubular transport of albumin in rats with aminonucleoside nephrosis.Kidney Int. 1:3–11

    PubMed  Google Scholar 

  37. Olsen, J.L., Rennke, H.G., Venkatachalam, M.A. 1981. Alterations in the charge and size selectivity barrier of the glomerular filter in aminonucleoside nephrosis in rats.Lab. Invest. 44:271–279

    PubMed  Google Scholar 

  38. Pappenheimer, J.R. 1953. Passage of molecules through capillary walls.Physiol. Rev. 33:387–423

    PubMed  Google Scholar 

  39. Pappenheimer, J.R., Renkin, E.M., Borrero, L.M. 1951. Filtration, diffusion and molecular sieving through peripheral capillary membranes. A contribution to the pore theory of capillary permeability.Am. J. Physiol. 167:13–46

    PubMed  Google Scholar 

  40. Renkin, E.M., Gilmore, J.P. 1973.In: Handbook of Physiology, Section 8: Renal Physiology. J. Orloff and R.W. Berliner, editors. pp. 185–248. American Physiological Society, Washington

    Google Scholar 

  41. Rennke, H.G., Cotran, R.S., Venkatachalam, M.A. 1975. Role of molecular charge in glomerular permeability: Tracer studies with cationized ferritins.J. Cell Biol. 67:638–646

    PubMed  Google Scholar 

  42. Rennke, H.G., Patel, Y., Venkatachalam, M.A. 1978. Glomerular filtration of proteins: Clearance of anionic, neutral, and cationic horseradish peroxidase in the rat.Kidney Int. 13:278–288

    PubMed  Google Scholar 

  43. Rennke, H.G., Venkatachalam, M.A. 1977. Glomerular permeability:In vivo tracer studies with polyanionic and polycationic ferritins.Kidney Int. 11:44–53

    PubMed  Google Scholar 

  44. Rennke, H.G., Venkatachalam, M.A. 1979. Glomerular permeability of macromolecules. Effect of molecular configuration on the fractional clearance of uncharged dextran and neutral horseradish peroxidase in the rat.J. Clin. Invest. 63:713–717

    PubMed  Google Scholar 

  45. Robson, A.M., Giangiacomo, J., Keinstra, R.A., Naqvi, S.T., Ingelfinger, J.R. 1974. Normal glomerular permeability and its modification by minimal change nephrotic syndrome.J. Clin. Invest. 54:1190–1199

    PubMed  Google Scholar 

  46. Smith, F.G., III, Deen, W.M. 1980. Electrostatic doublelayer interactions for spherical colloids in cylindrical pores.J. Colloid Interface Sci. 78:444–465

    Google Scholar 

  47. Verniory, A., Dubois, R., Decoodt, P., Gassèe, J.P., Lambert, P.P. 1973. Measurement of the permeability of biological membranes: Application to the glomerular wall.J. Gen. Physiol. 62:489–507

    PubMed  Google Scholar 

  48. Winetz, J.A., Robertson, C.R., Golbetz, H.V., Carrie, B.J., Salyer, W.R., Myers, B.D. 1981. The nature of the glomerular injury in minimal change and focal sclerosing glomerulopathies.Am. J. Kidney Dis. 1:91–98

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deen, W.M., Bridges, C.R. & Brenner, B.M. Biophysical basis of glomerular permselectivity. J. Membrain Biol. 71, 1–10 (1983). https://doi.org/10.1007/BF01870670

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870670

Key Words

Navigation