Advertisement

The Journal of Membrane Biology

, Volume 87, Issue 2, pp 107–119 | Cite as

Na+/Ca2+ countertransport in plasma membrane of rat pancreatic acinar cells

  • E. Bayerdörffer
  • W. Haase
  • I. Schulz
Articles

Summary

The presence of a coupled Na+/Ca2+ exchange system has been demonstrated in plasma membrane vesicles from rat pancreatic acinar cells. Na+/Ca2+ exchange was investigated by measuring45Ca2+ uptake and45Ca2+ efflux in the presence of sodium gradients and at different electrical potential differences across the membrane (=Δϕ) in the presence of sodium. Plasma membranes were prepared by a MgCl2 precipitation method and characterized by marker enzyme distribution. When compared to the total homogenate, the typical marker for the plasma membrane, (Na++K+)-ATPase was enriched by 23-fold. Markers for the endoplasmic reticulum, such as RNA and NADPH cytochromec reductase, as well as for mitochondria, the cytochromec oxidase, were reduced by twofold, threefold and 10-fold, respectively. For the Na+/Ca2+ countertransport system, the Ca2+ uptake after 1 min of incubation was half-maximal at 0.62 μmol/liter Ca2+ and at 20 mmol/liter Na+ concentration and maximal at 10 μmol/liter Ca2+ and 150 mmol/liter Na+ concentration, respecitively. When Na+ was replaced by Li+, maximal Ca2+ uptake was 75% as compared to that in the presence of Na+. Amiloride (10−3 mol/liter) at 200 mmol/liter Na+ did not inhibit Na+/Ca2+ countertransport, whereas at low Na+ concentration (25 mmol/liter) amiloride exhibited dose-dependent inhibition to be 62% at 10−2 mol/liter. CFCCP (10−5 mol/liter) did not influence Na+/Ca2+ countertransport. Monensin inhibited dose dependently; at a concentration of 5×10−6 mol/liter inhibition was 80%. A SCN or K+ diffusion potential (=Δϕ), being positive at the vesicle inside, stimulated calcium uptake in the presence of sodium suggesting that Na+/Ca2+ countertransport operates electrogenically, i.e. with a stoichiometry higher than 2 Na+ for 1 Ca2+. In the absence of Na+, Δϕ did not promote Ca2+ uptake. We conclude that in addition to ATP-dependent Ca2+ outward transport as characterized previously (E. Bayerdörffer, L. Eckhardt, W. Haase & 1. Schulz, 1985,J. Membrane Biol.84:45–60) the Na+/Ca2+ countertransport system, as characterized in this study, represents a second transport system for the extrusion of calcium from the cell. Furthermore, the high affinity for calcium suggests that this system might participate in the regulation of the cytosolic free Ca2+ level.

Key Words

Na+/Ca2+ countertransport plasma membrane pancreatic acinar cells amiloride 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amsterdam, A., Jamieson, J.D. 1972. Structural and functional characterization of isolated pancreatic exocrine cells.Proc. Natl. Acad. Sci. USA 69:3028–3032PubMedGoogle Scholar
  2. 2.
    Baker, P.F., Blaustein, M.P., Hodgkin, A.L., Steinhardt, R.A. 1969. The influence of calcium on sodium efflux in squid axons.J. Physiol. (London) 200:431–458Google Scholar
  3. 3.
    Bayerdörffer, E., Eckhardt, L., Haase, W., Schulz, I. 1985. Electrogenic calcium transport in plasma membrane of rat pancreatic acinar cells.J. Membrane Biol. 84:45–60Google Scholar
  4. 4.
    Bayerdörffer, E., Streb, H., Eckhardt, L., Haase, W., Schulz, I. 1984. Characterization of calcium uptake into rough endoplasmic reticulum of rat pancreas.J. Membrane Biol. 81:69–82Google Scholar
  5. 5.
    Blaustein, M.P. 1977. Effects of internal and external cations and of ATP on sodium-calcium and calcium-calcium exchange in squid axons.Biophys. J. 20:79–111PubMedGoogle Scholar
  6. 6.
    Blaustein, M.P., Wiesmann, W.P. 1970. Effect of sodium ions on calcium movements in isolated synaptic terminals.Proc. Nat. Acad. Sci. USA 66:664–671PubMedGoogle Scholar
  7. 7.
    Bridge, J.H.B., Bassingthwaighte, J.B. 1983. Uphill sodium transport driven by an inward calcium gradient in heart muscle.Science 219:178–180PubMedGoogle Scholar
  8. 8.
    Caroni, P., Reinlib, L., Carafoli, E. 1980. Charge movements during the Na+−Ca2+ exchange in heart sarcolemmal vesicles.Proc. Natl. Acad. Sci. USA 77:6354–6358PubMedGoogle Scholar
  9. 9.
    Ghijsen, W.E.J.M., De Jong, M.D., Os, C.H. van 1983. Kinetic properties of Na+/Ca2+ exchange in basolateral plasma membrane of rat small intestine.Biochim. Biophys. Acta 730:85–94PubMedGoogle Scholar
  10. 10.
    Gill, D.L., Grollman, E.F., Kohn, L.D. 1981. Calcium transport mechanisms in membrane vesicles from guinea pig synaptosomes.J. Biol. Chem. 256:184–192PubMedGoogle Scholar
  11. 11.
    Gmaj, P., Murer, H., Kinne, R. 1979. Calcium ion transport across plasma membranes isolated from rat kidney cortex.Biochem. J. 178:549–557PubMedGoogle Scholar
  12. 12.
    Grover, A.K., Kwan, C.Y., Daniel, E.E. 1981. Na−Ca exchange in rat myometrium membrane vesicles highly enriched in plasma membranes.Am. J. Physiol. 240:C175-C182PubMedGoogle Scholar
  13. 13.
    Grover, A.K., Kwan, C.Y., Rangachari, P.K., Daniel, E.E. 1983. Na−Ca exchange in a smooth muscle plasma membrane-enriched fraction.Am. J. Physiol. 244:C158-C165PubMedGoogle Scholar
  14. 14.
    Grzybowski, A.K., Tate, S.S., Datta, S.P. 1970. Magnesium and manganese complexes of citric and isocitric acids.J. Chem. Soc. (A):241–245Google Scholar
  15. 15.
    Hatcher, D.W., Goldstein, G. 1969. Improved methods for determination of RNA and DNA.Anal. Biochem. 31:42–50PubMedGoogle Scholar
  16. 16.
    Heeswijk, M.P.E. van, Geerten, J.A.M., Os, C.H. van 1984. Kinetic properties of the ATP-dependent Ca2+ pump and the Na+/Ca2+ exchange system in basolateral membranes from rat kidney cortex.J. Membrane Biol. 79:19–31Google Scholar
  17. 17.
    Hellmessen, W., Christian, A.L., Fasold, H., Schulz, I. 1985. Coupled Na+/H+-ion exchange in isolated acinar cells from the exocrine rat pancreas.Am. J. Physiol. (in press) Google Scholar
  18. 18.
    Hildmann, B., Schmidt, A., Murer, H. 1982. Ca++-transport across basal-lateral plasma membranes from rat small intestinal epithelial cells.J. Membrane Biol. 65:55–62Google Scholar
  19. 19.
    Kaplan, M.M. 1972. Progress in hepatology: Alkaline phosphatase.Gastroenterology 62:452–468PubMedGoogle Scholar
  20. 20.
    Kraus Friedman, N., Biber, J., Murer, H., Carafoli, E. 1982. Calcium uptake in isolated hepatic plasma-membrane vesicles.Eur. J. Biochem. 129:7–12PubMedGoogle Scholar
  21. 21.
    Kribben, A., Tyrakowski, T., Schulz, I. 1983. Characterization of Mg-ATP-dependent Ca2+ transport in cat pancreatic microsomes.Am. J. Physiol. 244:G480-G490Google Scholar
  22. 22.
    Ledvora, R.F., Hegyvary, C. 1983. Dependence of Na+−Ca2+ exchange and Ca2+−Ca2+ exchange on monovalent cations.Biochim. Biophys. Acta 729:123–136PubMedGoogle Scholar
  23. 23.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265–275PubMedGoogle Scholar
  24. 24.
    Mejbaum, W. 1939. Über die Bestimmng kleiner Pentosemengen insbesondere in Derivaten der Adenylsäure.Z. Physiol. Chem. 258:117–120Google Scholar
  25. 25.
    Milutinovic, S., Sachs, G., Haase, W., Schulz, I. 1977. Studies on isolated subcellular components of cat pancreas: I. Isolation and enzymatic characterization.J. Membrane Biol. 36:253–279Google Scholar
  26. 26.
    Mullins, L.J. 1977. A mechanism for Na/Ca transport.J. Gen. Physiol. 70:681–695PubMedGoogle Scholar
  27. 27.
    Parker, J.C. 1978. Sodium and calcium movements in dog red blood cells.J. Gen. Physiol. 71:1–17PubMedGoogle Scholar
  28. 28.
    Pitts, B.J.R. 1979. Stoichiometry of sodium-calcium exchange in cardiac sarcolemmal vesicles.J. Biol. Chem. 254:6232–6235PubMedGoogle Scholar
  29. 29.
    Portzehl, H., Caldwell, P.C., Rüegg, J.C. 1964. The dependence of contraction and relaxation of muscle fibers from the crabMaia squinado on the internal concentration of free calcium ions.Biochim. Biophys. Acta 79:581–591PubMedGoogle Scholar
  30. 30.
    Reeves, J.P., Hale, C.C. 1984. The stoichiometry of the cardiac sodium-calcium exchange system.J. Biol. Chem. 259:7733–7739PubMedGoogle Scholar
  31. 31.
    Reeves, J.P., Sutko, J.L. 1979. Sodium-calcium ion exchange in cardiac membrane vesicles.Proc. Natl. Acad. Sci. USA 76:590–594PubMedGoogle Scholar
  32. 32.
    Reeves, J.P., Sutko, J.L. 1980. Sodium-calcium exchange activity generates a current in cardiac membrane vesicles.Science 208:1461–1464PubMedGoogle Scholar
  33. 33.
    Reuter, H., Seitz, N. 1968. The dependence of calcium efflux from cardiac muscle on temperature and external ion composition.J. Physiol. (London) 195:451–470Google Scholar
  34. 34.
    Scharschmidt, B.F., Keeffe, E.B., Blankenship, N.M., Ockner, R.K. 1979. Validation of a recording spectrophotometric method for measurement of membrane-associated Mg- and NaK-ATPase activity.J. Lab. Clin. Med. 93:790–799PubMedGoogle Scholar
  35. 35.
    Schellenberg, G.D., Swanson, P.D. 1982. Properties of the Na+−Ca2+ exchange transport system from rat brain: Inhibition by amiloride.Fed. Proc. 41:673Google Scholar
  36. 36.
    Schulz, I. 1980. Messenger role of calcium in function of pancreatic acinar cells.Am. J. Physiol. 239:G335-G347Google Scholar
  37. 37.
    Shields, H.M., Bair, F.A., Bates, M.L., Yedlin, S.T., Alpers, D.H. 1982. Localization of immunreactive alkaline phosphatase in the rat small intestine at the light microscopic evel by immuncytochemistry.Gastroenterology 82:39–45PubMedGoogle Scholar
  38. 38.
    Siegl, P.K.S., Cragoe, E.J., Jr., Trumble, M.J., Kaczorowski, G.J. 1984. Inhibition of Na+/Ca2+ exchange in membrane vesicle and papillary muscle preparations from guinea pig heart by analogs of amiloride.Proc. Natl. Acad. Sci. 81:3238–3242PubMedGoogle Scholar
  39. 39.
    Sillen, L.G. 1971. Stability constants of metal-ion complexes (Special publication No. 25, supplement No. 1 to special publication No. 17), 2nd ed. Chemical Society, LondonGoogle Scholar
  40. 40.
    Smith, R.L., Macara, I.G., Levenson, R., Housman, D., Cantley, L. 1982. Evidence that a Na+/Ca2+ antiport system regulates murine erythroleukemia cell differentiation.J. Biol. Chem. 257:773–780PubMedGoogle Scholar
  41. 41.
    Sottocasa, G.L., Kuylenstierna, B., Ernster, L., Bergstrand, A. 1967. An electron-transport system associated with the outer membrane of liver mitochondria.J. Cell Biol. 32:415–436PubMedGoogle Scholar
  42. 42.
    Stolze, H., Schulz, I. 1980. Effect of atropine, ouabain, antimycin A, and A23187 on “trigger Ca2+ pool” in exocrine pancreas.Am. J. Physiol. 238:G338-G348Google Scholar
  43. 43.
    Streb, H., Schulz, I. 1983. Regulation of cytosolic free Ca2+ concentration in acinar cells of rat pancreas.Am. J. Physiol. 245:G347-G357Google Scholar
  44. 44.
    Ueda, T. 1983. Na+−Ca2+ exchange activity in rabbit lymphocyte plasma membranes.Biochim. Biophys. Acta 734:342–346PubMedGoogle Scholar
  45. 45.
    Ullrich, K.J., Rumrich, G., Klöss, S. 1976. Active Ca2+ reabsorption in the proximal tubule of the rat kidney. Dependence on sodium and buffer transport.Pfluegers Arch. 364:223–228Google Scholar
  46. 46.
    Vigne, P., Frelin, C., Cragoe, E.J., Jr., Lazdunski, M. 1983. Ethylisopropyl-amiloride: A new and highly potent derivate of amiloride for the inhibition of the Na+/H+ exchange system in various cell types.Biochem. Biophys. Res. Commun. 116:86–90PubMedGoogle Scholar
  47. 47.
    Wakasugi, H., Kimura, T., Haase, W., Kribben, A., Kauffmann, R., Schulz, I. 1982. Calcium uptake into acini from rat pancreas: Evidence for intracellular ATP-dependent calcium sequestration.J. Membrane Biol. 65:205–220Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • E. Bayerdörffer
    • 1
  • W. Haase
    • 1
  • I. Schulz
    • 1
  1. 1.Max-Planck-Institut für BiophysikFrankfurt-70Federal Republic of Germany

Personalised recommendations