The Journal of Membrane Biology

, Volume 20, Issue 1, pp 99–110 | Cite as

Isolation and characterization of the plasma membrane from Yoshida hepatoma cells

  • A. Réthy
  • A. Trevisani
  • R. Manservigi
  • V. Tomasi


Plasma membranes isolated from Yoshida ascites hepatoma AH-130 by a modification of the method of T. K. Ray (Biochim. Biophys. Acta196: 1, 1970), were subfractionated into three fractions having densities (d) 1.12, 1.14 and 1.16 by discontinuous sucrose density-gradient. Membrane subfractions were characterized by electron-microscopy, by assay of marker enzymes and by lipid composition. All subfractions appeared to be essentially free from whole mitochondria, lysosomes and nuclei. Subfraction d 1.16 had, the highest 5′-nucleotidase, Mg++-ATPase and (Na++K+)-ATPase activities; cytochromec oxidase was undetectable in any fraction and glucose-6-phosphatase was measurable only in fraction d 1.14. Adenylate cyclase had the highest activity in fractions d 1.14 and 1.16. Cyclic AMP phosphodiesterase was nearly equally distributed in the fractions. Adenylate, cyclase, 5′-nucleotidase and Mg++-ATPase activities of tumor membrane were lower with respect to liver plasma membrane, while cyclic AMP phosphodiesterase and (Na++K+)-ATPase were found to have similar activities in the two membrane preparations. With respect to liver membrane, hepatoma membrane contained a higher amount of glycolipids and a higher amount of phospholipids accounted for mainly, by sphingomyelin, phosphatidylserine and phosphatidic acid. The possible significance of the decrease of adenylate activity in the hepatoma membrane is briefly discussed.


ATPase Activity Hepatoma Cell Adenylate Cyclase Lipid Composition Phosphatidylserine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, D. O., Munshower, J., Morris, H. P., Weber, G. 1971. Regulation of adenyl cyclase in hepatomas of different growth rate.Cancer Res. 31: 557Google Scholar
  2. 2.
    Barber, A. J., Jamieson, G. A. 1970. Isolation and characterization of plasma membranes from human blood platelets.J. Biol. Chem. 245: 6357Google Scholar
  3. 3.
    Boch, K. W., Siekewitz, P., Palade, G. E. 1971. Localization and turnover studies of membrane nicotinamide adenin dinucleotide glycohydrolase in rat liver.J. Biol. Chem. 246: 188Google Scholar
  4. 4.
    Bombara, G., Morabito, D. 1966. Studio quantitativo della crescita dell'epatomaascite di Yoshida AH 130.Z. Krebsforsch. 68: 1Google Scholar
  5. 5.
    Burk, P. R. 1968. Reduced adenyl cyclase activity in a polyoma virus transformed cell line.Nature 219: 1272Google Scholar
  6. 6.
    Coleman, R., Mitchell, R. H., Finean, J. B., Hawthorne, J. N.. 1967. A purified plasma membrane fraction isolated from rat liver under isotonic conditions.Biochim. Biophys. Acta 135: 573Google Scholar
  7. 7.
    De Pierre, J. W., Karnovsky, M. L. 1973. Plasma membrane of mammalian cells. A review of methods for their characterization and isolation.J. Cell. Biol. 56: 275Google Scholar
  8. 8.
    Emmelot, P., Bos, C. J. 1966. Studies on plasma membranes. III. Mg++-ATPase, (Na+−K+−Mg++)-ATPase and 5′-nucleotidase activity of plasma membranes isolated from liver.Biochim. Biophys. Acta 120: 369Google Scholar
  9. 9.
    Emmelot, P., Bos, C. J. 1971. Studies on plasma membranes. XIV. Adenyl cyclase in plasma membranes isolated from rat and mouse livers and hepatomas, and its hormonal sensitivity.Biochim. Biophys. Acta 249: 285Google Scholar
  10. 10.
    Graham, J. M. 1972. Isolation and characterization of membranes from normal and transformed tissue-culture cells.Biochem. J. 130: 1113Google Scholar
  11. 11.
    Hack, H. M., Ferrans, V. J. 1960. Paper chromatographic analysis of plasmalogens.Z. Physiol. Chem. 315: 157Google Scholar
  12. 12.
    Hoeven, R. P. van, Emmelot, P. 1972. Studies on plasma membranes. XVIII. Lipid class composition of plasma membranes isolated from rat and mouse liver and hepatomas.J. Membrane Biol. 9: 105Google Scholar
  13. 13.
    House, P. D. R., Weidemann, M. J. 1970. Characterization of an I 125-insulin binding plasma membrane fraction from rat liver.Biochem. Biophys. Res. Commun. 41: 541Google Scholar
  14. 14.
    Kashing, D. M., Kasper, C. B. 1969. Isolation, morphology and composition of the nuclear membrane from rat liver.J. Biol. Chem. 244: 3786Google Scholar
  15. 15.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193: 265Google Scholar
  16. 16.
    Marinetti, G. V., Ray, T. K., Tomasi, V. 1969. Glucagon and epinephrine stimulation of adenyl cyclase in isolated rat liver plasma membranes.Biochem. Biophys. Res. Commun. 36: 185Google Scholar
  17. 17.
    Murray, A. W., Spiszmann, M., Atkinson, D. E. 1971. Adenosine-3′,5′-monophosphate phosphodiesterase in the growth medium ofPhysarium polycephalum.Science 171: 496Google Scholar
  18. 18.
    Perdue, J. F., Sneider, J. 1970. The isolation and characterization of the plasma membrane from chick embryo fibroblasts.Biochim. Biophys. Acta 196: 125Google Scholar
  19. 19.
    Pohl, S. L., Birnbaumer, L., Rodbell, M. 1971. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. I. Properties.J. Biol. Chem. 246: 1849Google Scholar
  20. 20.
    Ray, T. K. 1970. A modified method for the isolation of plasma membrane from rat liver.Biochim. Biophys. Acta 196: 1Google Scholar
  21. 21.
    Rethy, A., Tomasi, V., Trevisani, A. 1971. The role of lipids in the activity of adenylate cyclase of rat liver plasma membrane.Arch. Biochem. Biophys. 147: 36Google Scholar
  22. 22.
    Rethy, A., Tomasi, V., Trevisani, A., Barnabei, O. 1972. The role of phosphatidylserine in the hormonal control of adenylate cyclase activity of liver plasma membrane.Biochim. Biophys. Acta 290: 58Google Scholar
  23. 23.
    Rethy, A., Vaczi, L., Toth, F. D., Boldogh, I. 1973. Abnormal distribution of adenylate cyclase in neoplastic cells.In: The Role of Cyclic Nucleotides in Carcinogenesis. J. Schultz and H. G. Gratzner, editors. Vol 6, p. 153. Academic Press, New York-LondonGoogle Scholar
  24. 24.
    Smith, L. 1955. Cytochrome Cytochromea, a 1,a 2 anda 3.In: Methods in Enzymology. S. P. Colowick and N. O. Kaplan, editors. Vol. 2, p. 732. Academic Press, New YorkGoogle Scholar
  25. 25.
    Sutherland, E. W., Robison, G. A., Butcher, R. W. 1968. Some aspects of the biological role of adenosine-3′,5′-monophosphate (cyclic AMP).Circulation 37: 237Google Scholar
  26. 26.
    Swanson, M. A. 1955. Glucose-6-phosphatase from liver.In: Methods in Enzymology. S. P. Colowick and N. O. Kaplan, editors. Vol. 2, p. 542. Academic Press, New YorkGoogle Scholar
  27. 27.
    Tomasi, V., Rethy, A., Trevisani, A. 1972. Soluble and membrane-bound adenylate cyclase activity in Yoshida ascites hepatoma.Life Sci. 12: 145Google Scholar
  28. 28.
    Tomasi, V., Rethy, A., Trevisani, A. 1973. Soluble and membrane-bound adenylate cyclase of Yoshida hepatoma.In: The Role of Cyclic Nucleotides in Carcinogenesis. J. Schultz and H. G. Gratzner, editors. Vol. 6, p. 127. Academic Press, New York-LondonGoogle Scholar
  29. 29.
    Tomasi, V., Trevisani, A., Ferretti, E. 1975. Adenosine 3′,5′-cyclic phosphate phosphodiesterase of Yoshida hepatoma.Biochem. Exp. Biol. (Submitted for publication) Google Scholar
  30. 30.
    Wallach, D. F. H. 1967. Isolation of plasma membranes of animal cells.In: The Specificity of Cell Surfaces. B. D. Davis and L. Warren, editors. Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  31. 31.
    Weiss, L. 1970. Cell contact phenomena.In: In vitro. C. Waymouth, editor. Vol. 5, p. 48. Williams and Wilkins Co., BaltimoreGoogle Scholar
  32. 32.
    Wood, R. 1970. Plasma membranes: Structural analysis of neutral lipids and phospholipids of rat liver.Arch. Biochem. Biophys. 141: 174Google Scholar
  33. 33.
    Wood, R., Anderson, N. G., Scwartzendrubber, D. C. 1970. Tumor lipids: Characterization of the lipids isolated from membranous material.Arch. Biochem. Biophys. 141: 190Google Scholar
  34. 34.
    Yoshida, T. 1956. Contribution of the ascites hepatoma to the concept of malignancy of cancer.Ann. N.Y. Acad. Sci. 63: 852Google Scholar

Copyright information

© Springer-Verlag New York Inc 1975

Authors and Affiliations

  • A. Réthy
    • 1
  • A. Trevisani
    • 1
  • R. Manservigi
    • 1
  • V. Tomasi
    • 1
  1. 1.Institute of General PhysiologyUniversity of FerraraFerraraItaly

Personalised recommendations