The Journal of Membrane Biology

, Volume 99, Issue 1, pp 25–40 | Cite as

Ion transport by mitochondria-rich cells in toad skin

  • E. Hviid Larsen
  • Hans H. Ussing
  • Kenneth R. Spring
Articles

Summary

The optical sectioning video imaging technique was used for measurements of the volume of mitochondria-rich (m.r.) cells of the isolated epithelium of toad skin. Under short-circuit conditions, cell volume decreased by about 14% in response to bilateral exposure to Cl-free (gluconate substitution) solutions, apical exposure to ouabain resulted in a large increase in volume, which could be prevented either by the simultaneous application of amiloride in the apical solution or by the exposure of the epithelium to bilateral Cl-free solutions. Unilateral exposure to a Cl-free solution did not prevent ouabain-induced cell swelling. It is concluded that m.r. cells have an amiloride-blockable Na conductance in the apical membrane, a ouabain-sensitive Na pump in the basolateral membrane, and a passive Cl permeability in both membranes. From the initial rate of ouabain-induced cell volume increase the active Na current carried by a single m.r. cell was estimated to be 9.9±1.3 pA. Voltage clamping of the preparation in the physiological range of potentials (0 to −100 mV, serosa grounded) resulted in a cell volume increase with a time course similar to that of the stimulation of the voltage-dependent activation were prevented by exposure of the tissue to a Cl-free apical solution. The steady-state volume of the m.r. cells increased with the clamping voltage, and at −100 mV the volume was about 1.15 times that under short-circuit conditions. The rate of volume increase during current passage was significantly decreased by lowering the serosal K concentration (K i ) to 0.5mm, but was independent of whether K i was 2.4, 5, or 10mm. This indicates that the K conductance of the serosal membrane becomes rate limiting for the uptake of KCl when K i is significantly lower than its physiological value. It is concluded that the voltage-activated Cl currents flow through the m.r. cells and that swelling is caused by an uptake of Cl ions from the apical bath and K ions from the serosal bath. Bilateral exposure of the tissue to hypo- or hypertonic bathing solutions changed cell volume without detectable changes in the Cl conductance. The volume response to external osmotic perturbations followed that of an osmometer with an osmotically inactive volume of 21%. Using this value and the change in cell volume in response to bilateral Cl-free solutions, we calculated an intracellular steady-state Cl concentration of 19.8±1.7mm (n=6) of the short-circuited cell.

Key Words

sodium transport chloride transport quantitative light microscopy cell volume voltage-dependent chloride conductance mitochondria-rich cell 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benos, D.J. 1982. Amiloride: a molecular probe of sodium transport in tissue and cells.Am. J. Physiol. 242:C131-C145.Google Scholar
  2. Biber, T.U.L., Drewnowska, K., Baumgarten, C.M., Fisher, R.S. 1985. Intracellular Cl activity changes of frog skin.Am. J. Physiol. 249:F432-F438Google Scholar
  3. Boulan, E.R., Ques-von Petery, M.V., Rotunno, C.A., Cereijido, M. 1978. Studies on chloride permeability of the skin ofLeptodactylus ocellatus: III. Na+ and Cl effect on electrical phenomena.J. Membrane Biol. 42:345–356Google Scholar
  4. Brown, D., Grosso, A., De Sousa, R.C. 1981. The amphibian epidermis: Distribution of mitochondria-rich cells and the effect of oxytocin.J. Cell. Sci. 52:197–213Google Scholar
  5. Bruus, K., Kristensen, P., Larsen, E.H. 1976. Pathways for chloride and sodium transport across toad skin.Acta Physiol, Scand. 97:31–47Google Scholar
  6. Candia, O.A. 1978. Reduction of chloride fluxes by amiloride across the short circuited frog skin.Am. J. Physiol. 234:F437-F445Google Scholar
  7. Dörge, A., Rick, R., Thurau, K. 1985. Cl transport across the basolateral membrane in frog skin epithelium.Pfluegers Arch. 405 (Suppl. 1):s8-s11Google Scholar
  8. Ferreira, K.T.G., Ferreira, H.G. 1981. The regulation of volume and ion composition of frog skin.Biochim. Biophys. Acta 646:193–202Google Scholar
  9. Foskett, J.K., Ussing, H.H. 1986. Localization of chloride conductance to mitochondria-rich cells in frog skin epithelium.J. Membrane Biol. 91:251–258Google Scholar
  10. Fuchs, W., Larsen, E.H., Lindemann, B. 1977. Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin.J. Physiol. (London) 267:137–166Google Scholar
  11. Giraldez, F., Ferreira, K.T.G. 1984. Intracellular chloride activity and membrane potential in stripped frog skin (Rana temporaria).Biochim. Biophys. Acta,769:625–628Google Scholar
  12. Hanrahan, J.W., Alles, W.P., Lewis, S.A. 1985. Single anion selective channels in basolateral membrane of a mammalian tight epithelium.Proc. Natl. Acad. Sci. USA. 82:7791–7795Google Scholar
  13. Harck, A., Larsen, E.H. 1986. Concentration dependence of halide fluxes and halide selectivity of the anion pathway in toad skin.Acta Physiol. Scand. 128:289–304Google Scholar
  14. Harvey, B.J., Kernan, R.P. 1984. Intracellular ion activities in frog skin in relation to external sodium and effects of amiloride and/or ouabain.J. Physiol. (London) 349:501–517Google Scholar
  15. Katz, U., Larsen, E.H. 1984. Chloride transport in toad skin (Bufo viridis): The effect of salt adaptation.J. Exp. Biol. 109:353–372Google Scholar
  16. Katz, U., Scheffey, C. 1986. The voltage-dependent chloride conductance of toad skin is localized to mitochondria-rich cells.Biochim. Biophys. Acta 861:480–482Google Scholar
  17. Kirschner, L.B. 1970. The study of NaCl transport in aquatic animals.Am. Zool. 10:365–376Google Scholar
  18. Koefoed-Johnsen, V., Ussing, H.H. 1958. The nature of the frog skin potential.Acta Physiol. Scand. 25:150–163Google Scholar
  19. Koefoed-Johnsen, V., Ussing, H.H. 1974. Transport pathways in frog skin and their modification by copper ions.In: Secretory Mechanisms of Exocrine Glands. N.A. Thorn and O.H. Petersen, editors. VII Alfred Benzon Symposium. pp. 411–419. Munksgaard, CopenhagenGoogle Scholar
  20. Kristensen, P. 1978. Effect of amiloride on chloride transport across amphibian epithelia.J. Membrane Biol. Special Issue:167–185Google Scholar
  21. Kristensen, P. 1981. Is chloride transfer in frog skin localized to a special cell type?Acta Physiol. Scand. 113:123–124Google Scholar
  22. Kristensen, P. 1982. Chloride transport in frog skin.In: Chloride Transport in Biological Membranes. J.A. Zadunaisky, editor. pp. 310–322. Academic, New YorkGoogle Scholar
  23. Kristensen, P. 1983. Exchange diffusion, electrodiffusion and rectification in the chloride transport pathway of frog skin.J. Membrane Biol. 72:141–151Google Scholar
  24. Kristensen, P., Larsen, E.H. 1978. Relation between chloride exchange diffusion and a conductive chloride pathway across the isolated skin of the toadBufo bufo.Acta Physiol. Scand. 102:22–34Google Scholar
  25. Kristensen, P., Ussing, H.H. 1985. Epithelial organization.In: The Kidney: Physiology and Patophysiology. Vol. 2, pp 173–188. D.W. Seldin and G. Giebisch, editors. Raven, New YorkGoogle Scholar
  26. Larsen, E.H., Kristensen, P. 1978. Properties of a conductive cellular chloride pathway in the skin of the toad (Bufo bufo).Acta Physiol. Scand. 102:1–21Google Scholar
  27. Larsen, E.H., Rasmussen, B.E. 1982. Chloride channels in toad skin.Philos. Trans. R. Soc. London B 299:413–443Google Scholar
  28. Larsen, E.H., Rasmussen, B.E. 1985. A mathematical model of amphibian skin epithelium with two types of transporting cellular units.Pfluegers Arch. 405:S50-S58Google Scholar
  29. Larsen, E.H., Ussing, H.H., Spring, K.R. 1986. Volume response of mitochondria-rich cells of toad skin to amiloride and Na-free outside solution.Fed. Proc. 45:746Google Scholar
  30. Lucke, B., McCutcheon, M. 1932. The living cell as an osmotic system and its permeability to water.Physiol. Rev. 12:68–139Google Scholar
  31. Macey, R.I., Meyers, S. 1963. Dependence of chloride permeability on sodium in the isolated frog skin.Am. J. Physiol. 204:1095–1099Google Scholar
  32. MacRobbie, E.A.C., Ussing, H.H. 1961. Osmotic behaviour of the epithelial cells of frog skin.Acta Physiol. Scand. 53:348–365Google Scholar
  33. Mandel, L.H., Curran, P.F. 1972. Chloride flux via a shunt pathway in frog skin: Apparent exchange diffusion.Biochim. Biophys. Acta 282:258–264Google Scholar
  34. Marsh, D.J., Jensen, P.K., Spring, K.R. 1985. Computer-based determination of size and shape in living cells.J. Microsc. 137:281–292Google Scholar
  35. Nagel, W., Garcia-Diaz, J.F., Armstrong W.McD. 1981. Intracellular ionic activities in frog skin.J. Membrane Biol. 61:127–134Google Scholar
  36. Nagel, W., Garcia-Diaz, J.F., Essig, A. 1983. Contribution of junctional conductance to the cellular voltage-divider ratio in frog skins.Pfluegers Arch. 399:336–341Google Scholar
  37. Nelson, D.J., Tang, J.M., Palmer, L.G. 1984. Single-channel recordings of apical membrane chloride conductance in A6 epithelial cells.J. Membrane Biol. 80:81–89Google Scholar
  38. Ques-von Petery, M.V., Rotunno, C.A., Cereijido, M. 1978. Studies on chloride permeability of the skin ofLeptodactylus ocellatus: I. Na+ and Cl effect on passive movements of Cl.J. Membrane Biol. 42:317–330Google Scholar
  39. Rick, R., Dörge, A., Arnim, E. von Thurau, K. 1978. Electron microprobe analysis of frog skin epithelium: Evidence for a syncytial sodium transport compartment.J. Membrane Biol. 39:313–331Google Scholar
  40. Rick, R., Dörge, A., Katz, U., Bauer, R., Thurau, K. 1980. The osmotic behavior of toad skin epithelium (Bufo viridis).Pfluegers Arch. 385:1–10Google Scholar
  41. Rick, R., Roloff, C., Dörge, A., Beck, F.X., Thurau, K. 1984. Intracellular electrolyte concentrations in the frog skin epithelium: Effect of vasopressin and dependence on the Na concentration in the bathing media.J. Membrane Biol. 78:129–145Google Scholar
  42. Spring, K.R. 1985. The study of epithelial function by quantitative light microscopy.Pfluegers Arch. 405:s23-s27Google Scholar
  43. Spring, K.R., Hope, A. 1978. Size and shape of the lateral intercellular spaces in a living epithelium.Science 200:54–57Google Scholar
  44. Spring, K.R., Ussing, H.H. 1986. The volume of mitochondria-rich cells of frog skin epithelium.J. Membrane Biol. 92:21–26Google Scholar
  45. Ussing, H.H. 1982a. Volume regulation of frog skin epithelium.Acta Physiol. Scand. 114:363–369Google Scholar
  46. Ussing, H.H. 1982b. Pathways for transport in epithelia.In: Functional Regulation at the Cellular and Molecular Level R.A. Corradino, editor. pp. 285–297. Elsevier, AmsterdamGoogle Scholar
  47. Ussing, H.H. 1985. Volume regulation and basolateral co-transport of sodium, potassium, and chloride ions in frog skin epithelium.Pfleugers Arch. 405(Suppl. 1):S1-S7Google Scholar
  48. Voûte, C.L., Meier, W. 1978. The mitochondria rich cell of frog skin as hormone sensitive ‘shunt’ path.J. Membrane Biol. 40S:141–165Google Scholar
  49. Willumsen, N., Larsen, E.H. 1985. Passive chloride currents in toad skin: Potential dependence and relation to mitochondria-rich cell density.In: Transport Processes, Iono- and Osmoregulation. R. Gilles and M. Gilles-Baillien, editors. pp. 20–30. Springer Verlag, BerlinGoogle Scholar
  50. Willumsen, N.J., Larsen, E.H. 1986. Membrane potentials and intracellular Cl activity of toad skin epithelium in relation to activation and deactivation of the transepithelial Cl conductance.J. Membrane Biol. 94:173–190Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1987

Authors and Affiliations

  • E. Hviid Larsen
    • 1
  • Hans H. Ussing
    • 1
  • Kenneth R. Spring
    • 1
  1. 1.Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung and Blood InstituteNational Institutes of HealthBethesda

Personalised recommendations