Skip to main content
Log in

Voltage dependence of sodium-calcium exchange: Predictions from kinetic models

  • Articles
  • In Memoriam Peter F. Baker
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Voltage effects on the Na−Ca exchange system are analyzed on the basis of two kinetic models, a “consecutive” and a “simultaneous” reaction scheme. The voltage dependence of a given rate constant is directly related to the amount of charge which is translocated in the corresponding reaction step. Charge translocation may result from movement of an ion along the transport pathway, from displacement of charged ligand groups of the ion-binding site, or from reorientation of polar residues of the protein in the course of a conformational transition. The voltage dependence of ion fluxes is described by a set of coefficients reflecting the dielectric distances over which charge is translocated in the individual reaction steps. Depending on the charge of the ligand system and on the values of the dielectric coefficients, the flux-voltage curve can assume a variety of different shapes. When part of the transmembrane voltage drops between aqueous solution and binding site, the equilibrium constant of ion binding becomes a function of membrane potential. By studying the voltage dependence of ion fluxes in a wide range of sodium and calcium concentrations, detailed information on the microscopic properties of the transport system may be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Allen, T.J.A., Baker, P.F. 1986a. Comparison of the effects of potassium and membrane potential on the calcium-dependent sodium efflux in squid axons.J. Physiol. (London) 378:53–76

    Google Scholar 

  • Allen, T.J.A., Baker, P.F. 1986b. Influence of membrane potential on calcium efflux from giant axons ofLoligo.J. Physiol. (London) 378:77–96

    Google Scholar 

  • Baker, P.F. 1986. The sodium-calcium exchange system.In: Calcium and the Cell. Ciba Foundation Symposium 122. D. Evered, editor. pp. 73–92. John Wiley & Sons, Chichester

    Google Scholar 

  • Baker, P.F., Blaustein, M.P., Hodgkin, A.L., Steinhardt, R.A. 1969. The influence of calcium on sodium efflux in squid axons.J. Physiol. (London) 200:431–458

    Google Scholar 

  • Baker, P.F., Blaustein, M.P., Manil, J., Steinhardt, R.A. 1967. Ouabain-insensitive, calcium-sensitive sodium efflux from giant axons ofLoligo.J. Physiol. (London) 191:100P-102P

    Google Scholar 

  • Baker, P.F., DiPolo, R. 1984. Axonal calcium and magnesium homeostasis.Curr. Top. Membr. Transp. 22:195–248

    Google Scholar 

  • Barzilai, A., Spanier, R., Rahaminoff, H. 1984. Isolation, purification, and reconstitution of the Na+ gradient-dependent Ca2+ transporter (Na+−Ca2+ exchanger) from brain synaptic plasma membranes.Proc. Natl. Acad. Sci. USA 81:6521–6525

    Google Scholar 

  • Bers, D.M., Philipson, K.D., Nishimoto, A.Y. 1980. Sodium-calcium exchange and sidedness of isolated cardiac sarcolemmal vesicles.Biochim. Biophys. Acta 601:358–371

    Google Scholar 

  • Blaustein, M.P. 1977. Effects of internal and external cations and of ATP on sodium-calcium and calcium-calcium exchange in squid axons.Biophys. J. 20:79–111

    Google Scholar 

  • Blaustein, M.P., Russel, J.M., DeWeer, P. 1974. Calcium efflux from internally dialyzed squid axons: The influence of external and internal cations.J. Supramol. Struct. 2:558–581

    Google Scholar 

  • Brinley, F.J., Jr., Mullins, L.J. 1974. Effects of membrane potential on sodium and potassium fluxes in squid axons.Ann. N.Y. Acad. Sci. 242:406–432

    Google Scholar 

  • Carafoli, E. 1985. The homeostasis of calcium in heart cells.J. Mol. Cell. Cardiol. 17:203–212

    Google Scholar 

  • Caroni, P., Reinlieb, L., Carafoli, E. 1980. Charge movements during the Na+−Ca++ exchange in heart sarcolemmal vesicles.Proc. Natl. Acad. Sci. USA 77:6354–6358

    Google Scholar 

  • DiPolo, R. 1979. Calcium influx in internally dialyzed squid giant axons.J. Gen. Physiol. 73:91–113

    Google Scholar 

  • DiPolo, R., Beaugé, L. 1983. The calcium pump and sodium-calcium exchange in squid axons.Annu. Rev. Physiol. 45:313–324

    Google Scholar 

  • DiPolo, R., Bezanilla, F., Caputo, C., Rojas, E. 1985. Voltage-dependence of the Na/Ca exchange in voltage-clamped, dialyzed squid axons.J. Gen. Physiol. 86:457–478

    Google Scholar 

  • Edmonds, D.T. 1986. A two-channel electrostatic model of an ionic countertransport.Proc. R. Soc. London B 228:71–84

    Google Scholar 

  • Eigen, M., Maass, G. 1966. Über die Kinetik der Metallkomplexbildung der Alkali- und Erdalkaliionen in wäßrigen Lösungen.Z. Physik. Chem. 49:163–177

    Google Scholar 

  • Eisner, D.A., Lederer, W.J. 1985. Na−Ca exchange: Stoichiometry and electrogenicity.Am. J. Physiol. 248:C189-C202

    Google Scholar 

  • Eisner, D.A., Valdeolmillos, M. 1986. Na−Ca exchange in cardiac muscle.Fortschr. Zool. 33:443–455

    Google Scholar 

  • Hale, C.C., Slaughter, R.S., Ahrens, D.C., Reeves, J.P. 1984. Identification and partial purification of the cardiac sodium-calcium exchange protein.Proc. Natl. Acad. Sci. USA 81:6569–6573

    Google Scholar 

  • Hansen, U.-P., Gradmann, D., Sanders, D., Slayman, C.L. 1981. Interpretation of current-voltage relationships for “active” ion transport systems: I. Steady-state reaction-kinetic analysis of class-I mechanisms.J. Membrane Biol. 63:165–190

    Google Scholar 

  • Jardetzky, O. 1966. Simple allosteric models for membrane pumps.Nature (London) 211:969–970

    Google Scholar 

  • Jauch, P., Läuger, P. 1986. Electrogenic properties of the sodium-alanine cotransporter in pancreatic acinar cells: II. Comparison with transport models.J. Membrane Biol. 94:117–127

    Google Scholar 

  • Johnson, E.A., Kootsey, J.M. 1985. A minimum mechanism for Na+−Ca++ exchange: Net and unidirectional Ca++ fluxes as functions of ion composition and membrane potential.J. Membrane Biol. 86:167–187

    Google Scholar 

  • Kessler, M., Semenza, G. 1983. The small-intestinal Na+,d-glucose cotransporter: An asymmetric gated channel (or pore) responsive to Δψ.J. Membrane Biol. 76:27–56

    Google Scholar 

  • Kimura, I., Miyamae, S., Noma, A. 1987. Identification of sodium-calcium exchange current in single ventricular cells of guinea-pig.J. Physiol. (London) 384:199–222

    Google Scholar 

  • Kimura, I., Noma, A., Irisawa, H. 1986. Na−Ca exchange current in mammalian heart cells.Nature (London) 319:596–597

    Google Scholar 

  • Klingenberg, M., Riccio, P., Aquila, H., Buchanan, B.B., Grebe, K. 1976. Mechanism of carrier transport and the ADP, ATP carrier.In: The Structural Basis of Membrane Function. Y. Hatefi and L. Djavadi-Ohaniance, editors. pp. 293–311. Academic, New York

    Google Scholar 

  • Lamers, J.M.J., Stinis, J.T. 1981. An electrogenic Na+/Ca2+ antiporter in addition to the Ca2+ pump in cardiac sarcolemma.Biochim. Biophys. Acta 640:521–534

    Google Scholar 

  • Langer, G. A. 1982. Sodium-calcium exchange in the heart.Annu. Rev. Physiol. 44:435–449

    Google Scholar 

  • Läuger, P. 1980. Kinetic properties of ion carriers and channels.J. Membrane Biol. 57:163–178

    Google Scholar 

  • Läuger, P. 1984. Thermodynamic and kinetic properties of electrogenic ion pumps.Biochim. Biophys. Acta 779:307–341

    Google Scholar 

  • Läuger, P. 1985. Ionic channels with conformational substates.Biophys. J. 47:581–591

    Google Scholar 

  • Lederer, W.I., Nelson, M.T. 1983. Effects of extracellular sodium on calcium efflux and membrane current in single muscle cells from the barnacle.J. Physiol. (London) 341:325–339

    Google Scholar 

  • Ledvora, R.F., Hegyvary, C. 1983. Dependence of Na+−Ca2+ exchange and Ca2+−Ca2+ exchange on monovalent cations.Biochim. Biophys. Acta 729:123–136

    Google Scholar 

  • Mitchell, P. 1969. Chemiosmotic coupling and energy transduction.Theor. Exp. Biophys. 2:159–216

    Google Scholar 

  • Mullins, L.J. 1977. A mechanism for Na/Ca transport.J. Gen. Physiol. 70:681–695

    Google Scholar 

  • Mullins, L.J. 1979. The generation of electrical currents in cardiac fibers by Na/Ca exchange.Am. J. Physiol. 236:C103-C110

    Google Scholar 

  • Mullins, L.J. 1984. An electrogenic saga: Consequences of sodium-calcium exchange in cardiac muscle.In: Electrogenic Transport: Fundamental Principles and Physiological Implications. M.P. Blaustein and M. Lieberman, editors. pp. 161–179. Raven, New York

    Google Scholar 

  • Mullins, L.J., Brinley, F.J., Jr. 1975. Sensitivity of calcium efflux from squid axons to changes in membrane potential.J. Gen. Physiol. 65:135–152

    Google Scholar 

  • Mullins, L.J., Tiffert, T., Vassort, G., Whittemburg, J. 1983. Effects of internal sodium and hydrogen ions and of external calcium ions and membrane potential on calcium entry in squid axons.J. Physiol. (London) 338:295–319

    Google Scholar 

  • Nelson, M.T., Lederer, W.J. 1984. Sodium-dependent calcium efflux and sodium-dependent current in perfused barnacle muscle single cells.In: Electrogenic Transport: Fundamental Principles and Physiological Implications. M.P. Blaustein and M. Lieberman, editors. pp. 365–371. Raven, New York

    Google Scholar 

  • Patlak, C.S. 1957. Contributions to the theory of active transport: II. The gate type noncarrier mechanism and generalizations concerning tracer flow, efficiency and measurements of energy expenditure.Bull. Math. Biophys. 19:209–235

    Google Scholar 

  • Philipson, K.D. 1985. Sodium-calcium exchange in plasma membrane vesicles.Annu. Rev. Physiol. 47:561–571

    Google Scholar 

  • Philipson, K.D., Nishimoto, A.Y. 1980. Na+−Ca2+ exchange is affected by membrane potential in cardiac sarcolemmal vesicles.J. Biol. Chem. 255:6880–6882

    Google Scholar 

  • Pitts, B.R.J. 1979. Stoichiometry of Na−Ca exchange in cardiac sarcolemmal vesicles.J. Biol. Chem. 254:6232–6235

    Google Scholar 

  • Reeves, J.P., Hale, C.C. 1984. The stoichiometry of the cardiac sodium-calcium exchange system.J. Biol. Chem. 259:7733–7739

    Google Scholar 

  • Reeves, J.P., Sutko, J.L. 1979. Sodium-calcium ion exchange in cardiac membrane vesicles.Proc. Natl. Acad. Sci. USA 76:590–594

    Google Scholar 

  • Reeves, J.P., Sutko, J.L. 1980. Sodium-calcium exchange activity generates a current in cardiac membrane vesicles.Science 208:1461–1464

    Google Scholar 

  • Requena, J. 1983. Calcium transport and regulation in nerve fibers.Annu. Rev. Biophys. Bioeng. 12:237–257

    Google Scholar 

  • Restrepo, D., Kimmich, G.A. 1985. Kinetic analysis of the mechanism of intestinal Na+-dependent sugar transport.Am. J. Physiol. 248:C498-C509

    Google Scholar 

  • Reuter, H. 1982. Na−Ca countertransport in heart muscle.In: Membranes and Transport, Vol. I. A.N. Martonosi, editor. pp. 623–631. Plenum, New York

    Google Scholar 

  • Reuter, H., Seitz, N. 1968. The dependence of calcium efflux from cardiac muscle on temperature and external ion composition.J. Physiol. (London) 195:451–470

    Google Scholar 

  • Sjodin, R.A., Abercrombie, R.F. 1978. The influence of external cations and membrane potential on Ca-activated Na efflux inMyxicola giant axons.J. Gen. Physiol. 71:453–466

    Google Scholar 

  • Slaughter, R.S., Suto, J.L., Reeves, J.P. 1983. Equilibrium calcium-calcium exchange in cardiac sarcolemmal vesicles.J. Biol. Chem. 258:3183–3190

    Google Scholar 

  • Tanford, C. 1961. Physical Chemistry of Macromolecules. Chapter 8. John Wiley & Sons, New York

    Google Scholar 

  • Wong, A.Y.K., Bassingthwaighte, J.B. 1981. The kinetics of Ca−Na exchange in excitable tissue.Math. Biosci. 53:275–310

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Läuger, P. Voltage dependence of sodium-calcium exchange: Predictions from kinetic models. J. Membrain Biol. 99, 1–11 (1987). https://doi.org/10.1007/BF01870617

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870617

Key Words

Navigation