Advertisement

The Journal of Membrane Biology

, Volume 86, Issue 3, pp 229–238 | Cite as

Effects of polyhydric alcohols on the conformational stability of the purple membrane

  • James E. Draheim
  • Joseph Y. Cassim
Articles

Summary

The effect of different-sized polyhydric alcohols on the absorption and circular dichroic spectra of the purple membrane has been studied over the wavelength region 800 to 185 nm. Analysis of both the solution and the film spectra of the membrane revealed that these solvents induce conformational changes in the sole membrane protein, bacteriorhodopsin. Additional evidence supportive of these changes was obtained from protein fluorescence spectral studies. Although the net secondary structure of the bacteriorhodopsin is not observably altered, there is a reversible change in the protein tertiary structure. This change does not result in any significant change in the membrane crystallinity or the alignment of the protein helical polypeptide segments with respect to the membrane plane. However, it is of sufficient extent to change the protein-induced screw sense of the retinyl-chromophore symmetry and the local environments of the protein aromatic residues. The underlying mechanism appears to be a membrane surface-solvent interaction phenomenon since the spectral perturbation caused by these solvents appears to be independent of their effective sizes. Furthermore, partial enzymatic removal of the hydrophilic portion of the bacteriorhodopsins with papain increased the response of the membrane to this perturbation. An interpretation of these results is that polyhydric alcohols enhance hydrophobic interactions in the purple membrane which induces a more compact conformation of the bacteriorhodopsin. A possible molecular mechanism is presented.

Key Words

purple membrane bacteriorhodopsin glycerol circular dichroism oriented films polyhydric alcohols 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahl, P., Cone, R.A. 1984. Light activates rotations of bacteriorhodopsin in the purple membrane.Biophys. J. 45:1039–1049.PubMedGoogle Scholar
  2. Bauer, P.-J., Dencher, N.A., Heyn, M.P. 1976. Evidence for chromophore-chromophore interactions in purple membrane from reconstitution experiments of chromophore-free membrane.Biophys. Struct. Mechan. 2:79–82Google Scholar
  3. Becher, B., Cassim, J.Y. 1975. Improved isolation procedures for the purple membrane ofHalobacterium halobium.Prep. Biochem. 5:161–178PubMedGoogle Scholar
  4. Becher, B., Cassim, J.Y. 1976. Effects of light adaptation on the purple membrane ofHalobacterium halobium.Biophys. J. 16:1183–1200PubMedGoogle Scholar
  5. Becher, B., Cassim, J.Y. 1977. Effects of bleaching and regeneration on the purple membrane structure ofHalobacterium halobium.Biophys. J. 19:285–297PubMedGoogle Scholar
  6. Becher, B., Tokunaga, F., Fbrey, T.G. 1978. Ultraviolet and visible spectra of the purple membrane and its photocycle intermediates.Biochemistry 17:2293–2300PubMedGoogle Scholar
  7. Beece, D., Brownie, S.F., Czege, J., Eisenstein, L., Frauenfelder, H., Good, D., Marden, M.C., Marque, J, Ormos, P., Reinisch, L., Yue, K.T. 1981. The effect of viscosity on the photocycle of bacteriorhodopsin.Photochem. Photobiol. 33:517–522.Google Scholar
  8. Blaurock, A.E. 1975. Bacteriorhodopsin: A transmembrane pump containing α-helix.J. Mol. Biol. 93:139–158PubMedGoogle Scholar
  9. Bogomolni, R.A., Huang, S.-B., Tseng, T.W., King, G.I., Stoeckenius, W. 1977. Orientation of the bacteriorhodopsin transition dipole.Biophys. J. 17:98aGoogle Scholar
  10. Brith-Linder, M., Rosenheck, K. 1977. The circular dichroism of bacteriorhodopsin: Asymmetry and light scattering distortions.FEBS Lett. 76:41–44PubMedGoogle Scholar
  11. Dencher, N.A. 1983. The five retinal protein pigments ofHalobacteria: Bacteriorhodopsin, halorhodopsin, P565, P370 and slow-cycling rhodopsin.Photochem. Photobiol. 38:753–767Google Scholar
  12. Draheim, J.E., Cassim, J.Y. 1985. Large scale global structural changes of the purple membrane during the photocycle.Biophys. J. 46:497–507.Google Scholar
  13. Ebrey, T.G., Becker, B., Mao, B., Kilbride, P., Honig, B., 1977. Exciton interaction and chromophore orientation in the purple membrane.J. Mol. Biol. 112:377–397PubMedGoogle Scholar
  14. Eisenbach, M., Caplan, S.R. 1979. The light-driven pump ofHalobacterium halobium: Mechanism and function.Curr. Top. Membr. Trans. 12:165–248Google Scholar
  15. Eisenstein, L. 1982. Effects of viscosity on the photocycle of bacteriorhodopsin.Methods Enzymol. 88:297–305Google Scholar
  16. Gekko, K., Timasheff, S.N. 1981a. Mechanism of protein stabilization by glycerol: Preferential hydration in glycerol-water mixtures.Biochemistry 20:4667–4676PubMedGoogle Scholar
  17. Gekko, K., Timasheff, S.N. 1981b. Thermodynamic and kinetic examination of protein stabilization by glycerol.Biochemistry 20:4677–4686PubMedGoogle Scholar
  18. Henderson, R. 1977. The purple membrane fromHalobacterium halobium.Rev. Biophys. Bioeng. 6:87–109Google Scholar
  19. Henderson, R., Unwin, P.N.T. 1975. Three-dimensional model of purple membrane obtained by electron microscopy.Nature (London) 257:28–32Google Scholar
  20. Heyn, M.P., Bauer, P.-J., Dencher, N.A. 1975. Natural CD label to probe the structure of the purple membrane fromHalobacterium halobium by means of exciton coupling effects.Biochem. Biophys. Res. Commun. 67:897–903PubMedGoogle Scholar
  21. Heyn, M.P., Cherry, R.J., Muller, U. 1977. Transient and linear dichroism studies on bacteriorhodopsin: Determination of the orientation of the 568 nm all-trans retinal chromophore.J. Mol. Biol. 117:607–620PubMedGoogle Scholar
  22. Hsiao, T.L., Papadopoulos, G.K., Cassim, J.Y. 1978. Effects of sucrose and glycerol on the purple membrane structure ofHalobacterium halobium.Biophys. J. 18:182aGoogle Scholar
  23. Jap, B.K., Maestre, M.F., Hayward, S.B., Glaeser, R.M. 1983. Peptide-chain secondary structure of bacteriorhodopsin.Biophys. J. 43:81–89PubMedGoogle Scholar
  24. Jarabak, J. 1972. Human placental 15-hydroxyprostaglandin dehydrogenase.Proc. Natl. Acad. Sci. USA 69:533–534PubMedGoogle Scholar
  25. Kalisky, O., Feitelson, J., Ottolenghi, M. 1981. Photochemistry and fluorescence of bacteriorhodopsin excited in its 280 nm absorption band.Biochemistry 20:205–209PubMedGoogle Scholar
  26. Khorana, H.G., Gerber, G.E., Herlihy, W.C., Gray, C.P., Anderegg, R.J., Nihei, K., Beimann, K. 1979. Amino acid sequence of bacteriohodopsin.Proc. Natl. Acad. Sci. USA 76:5046–5050PubMedGoogle Scholar
  27. Korenstein, R., Hess, B. 1978. Immobilization of bacteriorhodopsin and orientation of its transition moment in purple membrane.FEBS Lett. 89:15–20PubMedGoogle Scholar
  28. Kriebel, A.N., Gillbro, T., Wild, U.P. 1979. A low temperature investigation of the intermediates of the photocycle of lightadapted bacteriorhodopsin. Optical absorption and fluorescence measurements.Biochim. Biophys. Acta 546:106–120PubMedGoogle Scholar
  29. Lee, J.C., Lee, L.Y. 1981. Preferential solvent interactions between proteins and polyethylene glycols.J. Biol. Chem. 256:625–631PubMedGoogle Scholar
  30. Lee, J.C., Timasheff, S.N. 1977.In vitro reconstitution of calf brain microtubules: Effects of solution variables.Biochemistry 16:1754–1764PubMedGoogle Scholar
  31. Muccio, D.D., Cassim, J.Y. 1979a. Interpretation of the absorption and circular dichroism spectra of oriented purple membrane films.Biophys. J. 26:427–440PubMedGoogle Scholar
  32. Muccio, D.D., Cassim, J.Y. 1979b. Interpretation of the effects of pH on the spectra of the purple membrane.J. Mol. Biol. 135:595–609PubMedGoogle Scholar
  33. Muccio, D.D., Cassim, J.Y. 1981. Analysis of the spectroscopic properties of bacteriorhodopsin in the purple membrane by a crystalline exciton model.Biophys. J. 33:103aGoogle Scholar
  34. Myers, J.S., Jakoby, W.B. 1973. Effect of polyhydric alcohols on the parameters of enzymes.Biochem. Biophys. Res. Commun. 51:631–636PubMedGoogle Scholar
  35. Neugebauer, D.C., Blaurock, A.E., Worcester, D.L. 1977. Magnetic orientation of purple membrane demonstrated by optical measurements and neutron scattering.FEBS Lett. 78:31–35PubMedGoogle Scholar
  36. Ottolenghi, M. 1980. The photochemistry of rhodopsins.Adv. Photochem. 12:97–200Google Scholar
  37. Ovchinnikov, Y.A., Abdulaev, N.G., Feigina, M.Y., Kiselev, A.V., Lobanov, N.A. 1979. The structural analysis of the functioning bacteriorhodopsin: An overview.FEBS Lett. 100:219–224PubMedGoogle Scholar
  38. Ovchinnikov, Y.A., Abdulaev, N.G., Tsetlin, V.I., Zakis, V.I. 1980. The structural analysis of the functioning bacteriorhodopsin: An overview.Bioorg. Chem. (USSR) 6:1427–1429Google Scholar
  39. Papadopoulos, G.K., Cassim, J.Y. 1981. Interpretations of the solution and oriented film spectra of brown membrane ofHalobacterium halobium.Photochem. Photobiol. 33:455–466Google Scholar
  40. Papadopoulos, G.K., Hsiao, T.L., Cassim, J.Y. 1978. Determination of the retinal/protein molar ratio for the purple membranes ofHalobacterium halobium andHalobacterium caterubrium.Biochem. Biophys. Res. Commun. 81:127–132PubMedGoogle Scholar
  41. Plotkin, B.J., Sherman, W.V. 1984. Spectral heterogeneity in protein fluorescence of bacteriorhodopsin: Evidence for intraprotein aqueous regions.Biochemistry 23:5353–5360PubMedGoogle Scholar
  42. Ruwart, M.J., Suelter, C.H. 1971. Activation of yeast pyruvate kinase by natural and artificial cryoprotectants.J. Biol. Chem. 246:5990–5993PubMedGoogle Scholar
  43. Shifrin, S., Parrott, C.L. 1975. Influence of glycerol and other polyhydric alcohols on the quaternary structure of an oligomeric protein.Arch. Biochem. Biophys. 166:426–432PubMedGoogle Scholar
  44. Stoeckenius, W., Bogomolni, R.A. 1982. Bacteriorhodopsin and related pigments of halobacteria.Annu. Rev. Biochem. 51:587–616PubMedGoogle Scholar
  45. Stoeckenius, W., Lozier, R.H., Bogomolni, R.A. 1979. Bacteriorhodopsin and the purple membrane of halobacteria.Biochim. Biophys. Acta 505:215–278PubMedGoogle Scholar
  46. Stoeckenius, W., Lozier, R.H., Bogomolni, R.A. 1981. Bacteriorhodopsin photocycle and stoichiometry.In: Chemiosmotic Proton Circuits in Biological Membranes. V.P. Skulachey and P.C. Hinkle, editors. pp. 283–309. Addison-Wesley, Reading, Mass.Google Scholar
  47. Yoshizawa, T. 1972. The behavior of visual pigments at low temperatures.In: Handbook of Sensory Physiology. H.J.A. Dartnall, editor. Vol. 7, pp. 146–179. Springer, Heidelberg.Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • James E. Draheim
    • 1
  • Joseph Y. Cassim
    • 1
  1. 1.Laboratory of J. Y. Cassim. Department of Microbiology and Program in Biophysics. College of Biological SciencesThe Ohio State UniversityColumbus

Personalised recommendations