Skip to main content
Log in

Role of interfacial structured water in membrane: Osmotic properties ofl-α-egg lecithin liposomes

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The role of large amounts of membrane-bound water in regulating various functions of the membrane is not clear at present. We have investigated the effect of perturbing the interfacial water structure on the osmotic shrinkage properties, such as water permeability and extent of shrinkage of egg lecithin liposomes. Water structure was perturbed by a series of reagents which have been earlier reported to affect phase transition of dipalmitoyl phosphatidylcholine liposomes by perturbing interfacial water structure. Anomalous variations of osmotic shrinkage properties with concentration of structure maker and breaker reagents have been interpreted to arise from concentration-dependent structural transitions of the ordered water at the membrane-aqueous interface. Various modes of interaction of these reagents on interfacial structured water have been suggested. Influence of molecular size and functional groups on the molecule in actions of some structure makers and breakers were also observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreoli, J.E., Troutman, S.L. 1971. An analysis of unstirred layers in series with ‘tight’ and ‘porous’ lipid bilayer membranes.J. Gen. Physiol. 57:464–478

    Google Scholar 

  2. Bean, R., Chan, H. 1969. Thermal transitions in conductivity of ultra-thin membranes.In: The Molecular Basis of Membrane Function. D.C. Tosteson, editor. pp. 133–146. Prentice-Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  3. Blok, M.C., Van Deenen, L.L.M., De Gier, J. 1976. Effect of gel to liquid-crystalline phase transition on the osmotic behaviour of phosphatidylcholine liposomes.Biochim. Biophys. Acta 433:1–12

    PubMed  Google Scholar 

  4. Blok, M.C., Van Der Neut-Kok, E.C.M., Van Deenen, L.L.M., De Gier, J. 1975. The effect of chain length and lipid phase transitions on the selective permeability properties of liposomes.Biochim. Biophys. Acta 406:187–196

    PubMed  Google Scholar 

  5. Boggs, J.M. 1980. Intermolecular hydrogen bonding between lipids: Influence on organization and function of lipids in membranes.Can. J. Biochem. 58:755–770

    PubMed  Google Scholar 

  6. Cass, A., Finkelstein, A. 1967. Water permeability of thin lipid membranes.J. Gen. Physiol. 50:1765–1784

    Article  Google Scholar 

  7. Cerbon, J. 1970. The influence of pH and temperature on the limited rotational freedom of the structured water and lipid hydrocarbon chains of natural membranes.Biochim. Biophys. Acta 211:389–395

    PubMed  Google Scholar 

  8. Clifford, J., Pethica, B.A., Smith, E.G. 1968. A nuclear magnetic resonance investigation of molecular motion in erythrocyte membranes.In: Membrane Models and the Formation of Biological Membranes. L. Bolis and B.A. Pethica, editors. pp. 19–42. North-Holland, Amsterdam

    Google Scholar 

  9. Coster, H.G.L., Simons, R. 1970. Anomalous dielectric dispersion in bimolecular lipid membranes.Biochim. Biophys. Acta 203:17–27

    PubMed  Google Scholar 

  10. Das, S., Singhal, G.S. 1981. Effect of change of water structure on the phase transition of liposomes of dipalmitoyl phosphatidylcholine.Int. J. Quant. Chem. 20:495–504

    Google Scholar 

  11. Drost-Hansen, W. 1971. Structure and properties of water at biological interfaces.In: Chemistry of the Cell Interface. H.D. Brown, editor. Part B, pp. 1–184. Academic, New York

    Google Scholar 

  12. Drost-Hansen, W., Thorhaug, A.K. 1967. Temperature effects in membrane phenomena.Nature (London) 215:506–508

    Google Scholar 

  13. Finch, E.D., Schneider, A.S. 1975. Mobility of water bound to biological membranes: A proton NMR relaxation study.Biochim. Biophys. Acta 406:146–154

    PubMed  Google Scholar 

  14. Franks, F. 1966. Solute-water interactions and the solubility behaviour of long chain paraffin hydrocarbons.Nature (London) 210:87–88

    Google Scholar 

  15. Glasel, J.A. 1970. Deuteron magnetic relaxation studies on the solution properties of some denaturing agents and surfactants.J. Am. Chem. Soc. 92:372–375

    PubMed  Google Scholar 

  16. Glasel, J.A. 1970. Participation of water in conformational changes of biopolymers as studied by deuteron magnetic relaxation.J. Am. Chem. Soc. 92:375–381

    PubMed  Google Scholar 

  17. Hauser, H. 1975. Lipids.In: Water—A Comprehensive Treatise. F. Franks, editor. Vol. 4, pp. 209–303. Plenum, New York

    Google Scholar 

  18. Horne, R.A. 1969. Marine Chemistry: The Structure of Water and the Chemistry of the Hydrosphere. Wiley-Interscience, New York

    Google Scholar 

  19. Inoue, K. 1974. Permeability properties of liposomes prepared from dipalmitoyl lecithin, dimyristoyl lecithin, egg lecithin, rat liver lecithin and beef brain sphingomyelin.Biochim. Biophys. Acta 339:390–402

    PubMed  Google Scholar 

  20. Jeffrey, G.A., Jordan, T.H., McMullan, R.K. 1967. Clathrate hydrates of some amines.Science 155:689–691

    Google Scholar 

  21. Jung, O.Y., Carlson, L.M., Balzer, C.J. 1973. Characteristics of the permeability barrier of human erythrocyte ghosts to nonelectrolytes.Biochim. Biophys. Acta 298:101–107

    PubMed  Google Scholar 

  22. Kaatze, U., Henze, R., Pottel, R. 1979. Dielectric relaxation and molecular motions in C14-lecithin-water systems.Chem. Phys. Lipids 25:149–177

    Google Scholar 

  23. Katz, Y., Diamond, J.M. 1974. Nonsolvent water in liposomes.J. Membrane Biol. 17:87–100

    Google Scholar 

  24. Kjellander, R. 1978. Water—A structural element in model membrane systems: An approach to some structural changes in the lecithin-water system.J. Colloid Interface Sci. 66:303–312

    Google Scholar 

  25. Klotz, I.M. 1970. Water: Its fitness as molecular environment.In: Membranes and Ion Transport. E.E. Bittar, editor. Vol. 1, pp. 93–122. Wiley-Interscience. London

    Google Scholar 

  26. Ladbrooke, B.D., Chapman, D. 1969. Thermal analysis of lipids, proteins and biological membranes. A review and summary of some recent studies.Chem. Phys. Lipids 3:304–367

    PubMed  Google Scholar 

  27. Lyman, G.H., Papahadjopoulos, D., Preisler, H.D. 1976. Phospholipid membrane stabilization by dimethylsulfoxide and other inducers of Friend leukemic cell differentiation.Biochim. Biophys. Acta 448:460–473

    PubMed  Google Scholar 

  28. Lyman, G.H., Preisler, H.D., Papahadjopoulos, D. 1976. Membrane action of DMSO and other chemical inducers of Friend leukemic cell differentation.Nature (London) 262:360–363

    Google Scholar 

  29. Macey, R.I., Karan, D.M., Farmar, R.E.L. 1972. Properties of water channels in human red cells.In: Biomembranes—Passive Permeability of Cell Membranes. F. Kreuzer and J.F.G. Slegers, editors. L.A. Manson, series editor. Vol. 3, pp. 331–340. Plenum, New York

    Google Scholar 

  30. Micelli, S., Galucci, E., Lippe, C. 1978. Nonelectrolyte permeability through black lipid membranes with different surface charge.Arch. Int. Physiol. Biochim. 86:755–759

    PubMed  Google Scholar 

  31. Naftalin, R.J. 1971. The role of unstirred layers in control of sugar movements across red cell membranes.Biochim. Biophys. Acta 233:635–643

    PubMed  Google Scholar 

  32. Nelson, S.S., Blei, I. 1966. Model Membrane Studies Related to Ionic Transport in Biological Systems. Office of Saline Water, Research and Development Progress Report 221. U.S. Govt. Printing Office, Washington, D.C.

    Google Scholar 

  33. Nichols, J.W., Deamer, D.W. 1980. Net proton-hydroxyl permeability of large unilamellar liposomes measured by an acid-base titration technique.Proc. Natl. Acad. Sci. USA 77:2038–2042

    PubMed  Google Scholar 

  34. Oku, N., Nojima, S., Inoue, K. 1980. Selective release of nonelectrolytes from liposomes upon perturbation of bilayers by temperature change or polyene antibiotics.Biochim. Biophys. Acta 595:277–290

    PubMed  Google Scholar 

  35. Papahadjopoulos, D., Nir, S., Ohki, S. 1971. Permeability properties of phospholipid membranes: Effect of cholesterol and temperature.Biochim. Biophys. Acta 266:561–583

    Google Scholar 

  36. Petersen, D.C. 1980. Water permeation through the lipid bilayer membrane: Test of the liquid hydrocarbon model.Biochim. Biophys. Acta 600:666–677

    PubMed  Google Scholar 

  37. Phillips, M.C., Finer, E.G., Hauser, H. 1972. Differences between conformations of lecithin and phosphatidylethanol-amine polar groups and their effects on interactions of phospholipid bilayer membranes.Biochim. Biophys. Acta 290:397–402

    PubMed  Google Scholar 

  38. Redwood, W.R., Haydon, D.A. 1969. Influence of temperature and membrane composition on the water permeability of phospholipid bilayers.J. Theor. Biol. 22:1–8

    Google Scholar 

  39. Schneider, A.S., Middaugh, C.R., Oldewurtel, M.D. 1979. Role of bound water in biological membrane structure: Fluorescence and infrared studies.J. Supramol. Struct. 10:265–275

    PubMed  Google Scholar 

  40. Schneider, M.J.T., Schneider, A.S. 1972. Water in biological membranes: Adsorption isotherms and circular dichroism as a function of hydration.J. Membrane Biol. 9:127–140

    Google Scholar 

  41. Solomon, A.K. 1972. Properties of water in red cell and synthetic membranes.In: Biomembranes—Passive Permeability of Cell Membranes. F. Kreuzer and J.F.G. Slegers, editors. L.A. Manson, series editor. Vol. 3, pp. 299–330.

  42. Stein, W.D. 1967. The Movement of Molecules Across Cell Membranes. Academic, New York

    Google Scholar 

  43. Szmant, H.H. 1975. Physical properties of dimethyl sulfoxide and its function in biological systems.In: Biological Actions of Dimethylsulfoxide. S.W. Jacob, and R. Herschler, editors.Ann. N.Y. Acad. Sci. 243:20–23

  44. Thompson, T.E. 1964. The properties of bimolecular phospholipid membranes.In: Cellular Membranes in Development. M. Locke, editor. pp. 83–96. Academic, New York

    Google Scholar 

  45. Yeagle, P.L., Hutton, W.C., Huang, C., Martin, R.B. 1975. Head group conformation and lipid cholesterol association in phosphatidylcholine vesicles: A31P (1H)-nuclear Overhauser effect study.Proc. Natl. Acad. Sci. USA 72:3477–3481

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, S., Singhal, G.S. Role of interfacial structured water in membrane: Osmotic properties ofl-α-egg lecithin liposomes. J. Membrain Biol. 86, 221–227 (1985). https://doi.org/10.1007/BF01870601

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870601

Key Words

Navigation