Skip to main content
Log in

The mechanism of Cl transport at the plasma membrane ofChara corallina I. Cotransport with H+

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Cl transport into cells ofChara corallina was studied in relation to that of other ions which have been proposed as cosubstrates for the Cl transport system. Although there appears to be a partial mutual dependence between K+ and Cl for transport in intact cells, this is not apparent in cells which have been perfused internally. Moreover, in intact cells, the fluxes of K+ and Cl show a large degree of independence in their responses to Cl starvation. Cl transport is electrogenic in a direction indicating the transport of excess positive charge into the cell. In the absence of any other likely counter ion, it is suggested that Cl is cotransported with H+. Response of Cl influx to internal and external pH in perfused cells is consistent with this suggestion. There appears, in addition, to be a role for ATP in transport as judged by fourfold stimulation of Cl influx in perfused cells when 1mm ATP is incorporated in the perfusion medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bielby, M.J., Walker, N.A. 1980. Chloride influx inChara: electrogenic and probably proton-coupled.In: Plant Membrane Transport, R.M. Spanswick, W.J. Lucas, J. Dainty, editors. Elsevier, Amsterdam

    Google Scholar 

  • Cleland, W.W. 1970. Steady state kinetics.In: The Enzymes: Kinetics and Mechanism. P.D. Boyer, editor. p. 1. Academic Press, New York

    Google Scholar 

  • Coster, H.G.L. 1966. Chloride in cells ofChara australis.Aust. J. Biol. Sci. 19:545

    Google Scholar 

  • Dainty, J., Hope, A.B. 1959. Ionic relations of cells ofChara australis. I. Ion exchange in the cell wall.Aust. J. Biol. Sci. 12:395

    Google Scholar 

  • Etherton, B., Nuovo, G.J. 1974. Rapid changes in membrane potentials of oat coleoptile cells induced by amino acids and carbohydrates.Plant Physiol. 55:49 (Suppl)

    Google Scholar 

  • Felle, H., Bentrup, F.W. 1977. A study of the primary effect of the uncoupler carbonyl cyanidem-chlorophenylhydrazone on membrane potential and conductance inRiccia fluitans.Biochim. Biophys. Acta 464:179

    Google Scholar 

  • Findlay, G.P., Hope, A.B. 1964. Ionic relations of cells ofChara australis. VII. The separate electrical characteristics of the plasmalemma and tonoplast.Aust. J. Biol. Sci. 17:62

    Google Scholar 

  • Findlay, G.P., Hope, A.B., Pitman, M.G., Smith, F.A., Walker, N.A. 1969. Ion fluxes in cells ofChara corallina.Biochim. Biophys. Acta 183:565

    Google Scholar 

  • Hansen, U.P. 1978. Do light-induced changes in membrane potential ofNitella reflect the feedback regulation of a cytoplasmic parameter?J. Membrane Biol. 41:197

    Google Scholar 

  • Hope, A.B., Simpson, A., Walker, N.A. 1966. The efflux of chloride from cells ofNitella andChara.Aust J. Biol. Sci. 19:355

    Google Scholar 

  • Hope, A.B., Walker, N.A. 1975. The Physiology of Giant Algal Cells. Cambridge University Press, Cambridge

    Google Scholar 

  • Hutchinson, G.E. 1975. A treatise on Limnology. Vol. III. Limnological Botany, Wiley, New York

    Google Scholar 

  • Jayasuria, H.D. 1975. Ph.D. Thesis. University of Cambridge, Cambridge

  • Jones, M.G.K., Novacky, A., Dropkin, V.H. 1975. Transmembrane potentials of parenchyma cells and nematode-induced transfer cells.Protoplasma 85:15

    Google Scholar 

  • Kitasato, H. 1968. The influence of H+ on the membrane potential and ion fluxes ofNitella.J. Gen. Physiol. 52:60

    Google Scholar 

  • Komor, E., Tanner, W. 1976. The determination of membrane potential ofChlorella vulgaris. Evidence for electrogenic sugar transport.Eur. J. Biochem. 70:197

    Google Scholar 

  • Lefevre, J., Gillet, C. 1970. Variations de la difference de potentiel électrochimique des chlorures chezNitella en présence de benzène sulphonate.Experientia 26:482

    Google Scholar 

  • MacRobbie, E.A.C. 1974. Ion uptake.In: Algal Physiology and Biochemistry. W.D.P. Stewart, editor. p. 676. Blackwell, Oxford

    Google Scholar 

  • Novacky, A., Fischer, E., Ullrich-Eberius, C.I., Lüttge, U., Ullrich, W.R. 1978. Membrane potential changes during transport of glycine as a neutral amino acid and nitrate inLemna gibba Cl.FEBS Lett 88:264

    Google Scholar 

  • Pickard, W.F. 1973. Does the resting potential ofChara braunii have an electrogenic component?Can. J. Bot. 51:715

    Google Scholar 

  • Portzehl, H., Caldwell, P.C., Rüegg, J.C. 1964. The dependence of contraction and relaxation of muscle fibres from the crabMaia squimado on the internal concentration of free ions.Biochim. Biophys. Acta 79:581

    Google Scholar 

  • Raven, J.A. 1976. Transport in algal cells.In: Encyclopedia of Plant Physiology. Vol. 2, Part A. Transport in Cells. M.G. Pitman, U. Lüttge, editors. p. 129. Springer-Verlag, Berlin

    Google Scholar 

  • Raven, J.A., Smith, F.A. 1976. Cytoplasmic pH regulation and electrogenic H+ extrusion.Curr. Adv. Plant. Sci. 8:649

    Google Scholar 

  • Reid, R.J., Walker, N.A. 1980. Chloride influx inChara driven by ATP?In Plant Membrane Transport R.M. Spanswick, W.J. Lucas, J. Dainty, editors. Elsevier, Amsterdam

    Google Scholar 

  • Richards, J.L., Hope, A.B. 1974. The role of protons in determining membrane electrical characteristics inChara corallina.J. Membrane Biol. 16:121

    Google Scholar 

  • Sanders, D. 1978. Ph.D. Thesis. University of Cambridge, Cambridge

  • Sanders, D. 1980a. Control of plasma membrane Cl fluxes inChara corallina by external Cl and lightJ. Exp. Bot. (in press)

  • Sanders, D. 1980b. Control of Cl influx inChara corallina by cytoplasmic Cl concentration.J. Membrane Biol. 52:51

    Google Scholar 

  • Shimmen, T., Tazawa, M. 1977. Control of membrane potential and excitability ofChara cells with ATP and Mg++.J. Membrane Biol. 37:167

    Google Scholar 

  • Slayman, C.L. 1980. Transport control phenomena inNeurospora.In: Plant Membrane Transport R.M. Spanswick, W.J. Lucas, J. Dainty, editors. Elsevier, Amsterdam

    Google Scholar 

  • Slayman, C.L., Slayman, C.W. 1974. Depolarization of the plasma membrane ofNeurospora during active transport of glucose: evidence for a proton-dependent co-transport system.Proc. Nat. Acad. Sci USA 71:1935

    Google Scholar 

  • Slayman, C.L., Slayman, C.W., Hansen, U.-P. 1977. Current-voltage relationship for the glucose/H+ cotransport system inNeurospora.In: Transmembrane Ionic Exchanges in Plants. M. Thellier, A. Monnier, M. Demarty, J. Dainty, editors. p. 115. CNRS, Paris

    Google Scholar 

  • Smith, F.A. 1970. The mechanism of chloride transport in characean cells.New Phytol. 69:903

    Google Scholar 

  • Smith, F.A., Raven, J.A. 1974. Energy-dependent processes inChara corallina: absence of light-stimulation when only photosystem one is operative.New Phytol. 73:1

    Google Scholar 

  • Smith, F.A., Walker, N.A. 1976. Chloride transport inChara corallina and the electrochemical potential difference for hydrogen ions.J. Exp. Bot. 27:451

    Google Scholar 

  • Smith, F.A., West, K.R. 1969. A comparison of the effects of metabolic inhibitors on chloride uptake and photosynthesis inChara corallina.Aust. J. Biol. Sci. 22:351

    Google Scholar 

  • Spanswick, R.M. 1974. Evidence for an electrogenic ion pump inNitella translucens. II. Control of the light-stimulated component of membrane potential.Biochim. Biophys. Acta 332:387

    Google Scholar 

  • Spanswick, R.M., Miller, A.G. 1977. The effect of CO2 on Cl influx and electrogenic pump inNitella translucens.In Transmembrane Ionic Exchanges in Plants. M. Thellier, A. Monnier, M. Demarty, J. Dainty, editors. p. 239. CNRS, Paris

    Google Scholar 

  • Spear, D.G., Barr, J.K., Barr, C.E. 1969. Localization of hydrogen ion and chloride ion fluxes inNitella.J. Gen. Physiol. 54:397

    Google Scholar 

  • Stroede, W. 1933. Über die Beziehungen der Characeen zu den chemischen Faktoren der Wohngewässer und des Schlammes.Arch. Hydrobiol. 25:192

    Google Scholar 

  • Tazawa, M., Kikuyama, M., Shimmen, T. 1976. Electric characteristics and cytoplasmic streaming of characeae cells lacking tonoplast.Cell Struct. Funct. 1:165

    Google Scholar 

  • Tazawa, M., Shimmen, T. 1980. Control of electrogenesis with ATP, Mg++, H+ and light in perfused cells ofChara.In: Electrogenic Ion Pumps. C.L. Slayman, editor. Academic Press, New York

    Google Scholar 

  • Walker, N.A., Hope, A.B. 1969. Membrane fluxes and electrical conductance in characean cells.Aust. J. Biol. Sci. 22:1179

    Google Scholar 

  • Wood, H.G., Davies, J.J., Lochmüller, H. 1966. The equilibria of reactions catalysed by carboxytransphosphorylase, carboxykinase and pyruvate carboxylase and the synthesis of phosphoenolpyruvate.J. Biol. Chem. 241:5692

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanders, D. The mechanism of Cl transport at the plasma membrane ofChara corallina I. Cotransport with H+ . J. Membrain Biol. 53, 129–141 (1980). https://doi.org/10.1007/BF01870581

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870581

Keywords

Navigation