Skip to main content
Log in

Water and salt permeability of gastric vesicles

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Volume-dependent changes in light scatter have been shown to be a linear function of the osmotic gradient imposed upon gastric vesicles purified from hog gastric mucosa. Observation of the light scattered 90° to incident, using the Durrum stop flow system D-110, indicates that the vesicles exposed to hypertonic medium undergo rapid shrinkage due to water loss from the vesicle interior. The rate constant for this water movement is 1.1±0.09 sec−1 (n=10) and is linearly dependent on temperature between 16 and 36°C. The activation energy of 13.93±0.60 kcal mole−1 (n=3), calculated from an Arrhenius plot, is inconsistent with water movement facilitated by a large-pore aqueous channel. A slower reswell phase, dependent on solute entry into the intravesicular space, follows the water-dependent shrink phase. KCl entry, studied because of the intravesicular requirement for active K+/H+ transport, exhibits two entry stages. The faster, described by a single exponential imposed upon a constantly sloping background, has a rate constant of 7.75±0.48×10−3 sec−1 (n=15). The slower phase, which typically accounts for 90% of the reswell process, demonstrates a rate constant of 1.94±0.23×10−4 sec−1 (n=15). In the presence of valinomycin or nigericin, two fast rate constants and one slow rate constant of swelling are observed. The rate constant of the faster reswell phase is increased from 7.75±0.48×10−3 sec−1 (n=15) to 15.74±3.7×10−3 sec−1 (n=5) and 17.23±3.4×10−3 (n=3) by the addition of nigericin (1 μg ml−1) and valinomycin (4.5 μm), respectively. The second part of the faster reswell phase is approximately that seen in the control population. Transport-dependent volume changes of significant magnitude can be demonstrated following the addition of ATP to vesicles equilibrated with 150mm KCl. The volume change is a function of HCl leak rate and is abolished by ionophores which eliminate the transport-dependent pH gradient. So −-4 substitution, which eliminates the overshoot phenomena observed in KCl medium, also eliminates the shrinkage resulting from ATP addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AL-Zahid, G., Schafer, J.A., Troutman, S.L., Andreoli, T.E. 1977. Effect of antidiuretic hormone on water and solute permeation, and the activation energies for these processes in mammalian cortical collecting tubules.J. Membrane Biol. 31:103

    Google Scholar 

  • Bangham, A.D., DeGier, J., Greville, G.P. 1967. Osmotic properties and water permeability of phospholipid liquid crystals.Chem. Phys. Lipids 1:225

    Google Scholar 

  • Chang, H., Saccomani, G., Rabon, E., Schackmann, R., Sachs, G. 1977. Proton transport by gastric membrane vesicles.Biochim. Biophys. Acta 464:313

    Google Scholar 

  • Durbin R.P., Helander, H.F. 1978. Distribution of osmotic flow in stomach and gallbladder.Biochim. Biophys. Acta 179

  • Ganser, A., Forte, J. 1973. Ionophoretic stimulation of K+-ATPase of oxyntic cell microsomes.Biochem. Biophys. Res. Commun. 54:690

    Google Scholar 

  • Hays, R., Leaf, A. 1962. The state of water in isolated toad bladder in the presence and absence of vasopressin.J. Gen. Physiol. 45:933

    Google Scholar 

  • Hopfer, U., Nelson, K., Perrotto, J., Isselbacher, K. 1973. Glucose transport in isolated brush border membranes from rat small intestine.J. Biol. Chem. 248:25

    Google Scholar 

  • Jacobs, M.M., Glassman, H.N., Parpart, A.K. 1935–36. Osmotic properties of the erythrocyte.J. Cell. Comp. Physiol. 7:197

    Google Scholar 

  • Kamino, K., Inoue, A. 1969. Light-scattering studies on rabbit brain microsomes.Biochim. Biophys. Acta 183:36

    Google Scholar 

  • Kinne, R., Murer, H., Kinne-Saffran, E., Thees, M., Sachs, G. 1975. Sugar transport by renal plasma membrane vesicles.J. Membrane Biol. 21:375

    Google Scholar 

  • Kometani, T., Kasa, M. 1978. Ionic permeability of sarcoplasmic reticulum vesicles measured by light scattering method.J. Membrane Biol. 41:295

    Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the folin phenol reagent.J. Biol. Chem. 193:265

    Google Scholar 

  • Nevis, A. 1958. Water transport in invertebrate peripheral nerve fibers.J. Gen. Physiol. 41:927

    Google Scholar 

  • Owen, J.D., Eyring, E.M. 1975. Reflection coefficients of permeant molecules in human red cell suspensions.J. Gen. Physiol. 66:251

    Google Scholar 

  • Price, H.D., Thompson, T.E. 1969. Properties of lipid bilayer membranes separating two aqueous phases: temperature dependence of water permeability.J. Mol. Biol. 41:443

    Google Scholar 

  • Rabon, E., Chang, H.H., Saccomani, G., Sachs, G. 1978a. Transport parameters of gastric vesicles.Acta Physiol. Scand. Suppl., p. 409

  • Rabon, E., Chang, H., Sachs, G. 1978b. Quantitation of hydrogen ion and potential gradients in gastric plasma membrane vesicles.Biochemistry 17:3345

    Google Scholar 

  • Rabon, E., Kajdos, I., Sachs, G. 1979. Induction of a chloride conductance in gastric vesicles by limited trypsin or chymotrypsin digestion or ageing.Biochim. Biophys. Acta (in press)

  • Saccomani, G., Crago, S., Mihas, A., Dailey, D., and Sachs, G. 1978. Tissue and cell localization of hog gastric plasma membranes by antibody techniques.Acta Physiol. Scand. Suppl. p. 293

  • Sachs, G. 1977. H+ transport by a non-electrogenic gastric ATPase as a model for acid secretion.Rev. Physiol. Biochem. Pharmacol. 79:133

    Google Scholar 

  • Sachs, G., Chang, H., Rabon, E., Schackmann, R., Lewin, M., Saccomani, G. 1976. A non-electrogenic H+ pump in plasma membranes of hog stomach.J. Biol. Chem. 251:7690

    Google Scholar 

  • Sachs, G., Chang, H., Rabon, E., Schackmann, R., Sarau, H.M., Saccomani, G. 1977. Metabolic and membrane aspects of gastric H+ transport.Gastroenterology 73:931

    Google Scholar 

  • Sachs, G., Lewin, M., Spenney, J.G. 1978.Physiol. Rev. 58:106

    Google Scholar 

  • Sachs, G., Rabon, E., and Saccomani, G. 1979. Active and passive ion transport by gastric vesicles.In: Cation Flux across Biomembranes, Y. Mukohata, L. Packer, editors. pp. 53–66. Academic Press, New York

    Google Scholar 

  • Schackmann, R. 1976. Ph. D. Dissertation. Rice University, Houston

  • Schackmann, R., Schwartz, A., Saccomani, G., Sachs, G. 1977. Cation transport by gastric H+:K+ ATPase.J. Membrane Biol. 32:361

    Google Scholar 

  • Sha'afi, R.I., Gary-Bobo, C.M., Solomon, A.K. 1971. Permeability of red cell membranes to small hydrophilic and lipophilic solutes.J. Gen. Physiol. 58:238

    Google Scholar 

  • Tedeschi, H., Harris, D.L. 1955. The osmotic behavior and permeability to non-electrolytes of mitochondria.Arch. Biochem. Biophys. 58:52

    Google Scholar 

  • Yoda, A., Hokin, L.E. 1970. On the reversibility of binding of cardiotonic steroids to a partially purified (Na++K+) activated adenosine triphosphatase from beef brain.Biochem. Biophys. Res. Commun. 40:880

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabon, E., Takeguchi, N. & Sachs, G. Water and salt permeability of gastric vesicles. J. Membrain Biol. 53, 109–117 (1980). https://doi.org/10.1007/BF01870579

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870579

Keywords

Navigation