The Journal of Membrane Biology

, Volume 77, Issue 3, pp 187–199 | Cite as

Chloride secretion by canine tracheal epithelium: IV. Basolateral membrane K permeability parallels secretion rate

  • Philip L. Smith
  • Raymond A. Frizzell


We evaluated the K conductance properties of the basolateral membranes of the surface cells of canine tracheal epithelium using microelectrode techniques. Studies were conducted under basal conditions (indomethacin, 10−6m, mucosal solution) and after stimulation of electrogenic Cl secretion with epinephrine (10−6m, serosal solution). Elevated serosal solution [K] depolarized the electrical potential differences across the apical (ψa) and basolateral (ψb) membranes in both the presence and absence of epinephrine. Serosal barium (0.5mm) also depolarized ψa and ψb and selectively increased basolateral membrane resistance threefold. We also used K-selective microelectrodes to determine cell K activity (a c K ) and the driving force for K transport across the limiting membranes under basal and stimulated conditions. Stimulation of Cl secretion was not associated with significant changes in ψb ora c K so that the driving force for k exit from cell to serosal solution (ca. 20 mV) was not altered. There was close agreement between the basolateral membrane electromotive force (E b ) determined from prior studies (M.J. Welsh, P.L. Smith and R.A. Frizzell,J. Membrane Biol.71:209–218, 1983) and the chemical potential difference for K across this barrier (E b K ) in the presence and absence of epinephrine. These findings support the notion that the basolateral membrane is characterized by a high conductance to K under both secreting and nonsecreting conditions and indicate that the decrease in basolateral membrane resistance that accompanies stimulation of Cl secretion results from an increase in its K conductance. This obviates changes ina c K , that would otherwise accompany increased Na/K pump activity and, by hyperpolarizing ψa establishes the electrical driving force for Cl secretion across the apical membrane.

Key Words

tracheal epithelium chloride secretion cell potassium potassium conductance epinephrine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Bazzaz, F.J., Al-Awqati, Q. 1979. Interaction between sodium and chloride transport in canine tracheal mucosa.J. Appl. Physiol. 46:111–119Google Scholar
  2. Al-Bazzaz, F.J., Cheng, E. 1979. Effect of catecholamines on ion transport in dog tracheal epithelium.J. Appl. Physiol. 47:397–403Google Scholar
  3. Al-Bazzaz, F.J., Jayaram, T. 1981. Ion transort by canine tracheal mucosa: Effect of elevation of cellular calcium.Exp. Lung Res. 2:121–130Google Scholar
  4. Al-Bazzaz, F.J., Yadava, V.P., Westenfelder, C. 1981. Modification of Na and Cl transport in canine tracheal mucosa by prostaglandins.Am. J. Physiol. 240:F101-F105Google Scholar
  5. Boulpaep, E.J. 1971. Electrophysiological properties of the proximal tubule: Importance of cellular and intercellular pathways.In: Electrophysiology of Epithelia. G. Giebisch, editor. p. 91. K. Schattauer Verlag, StuttgartGoogle Scholar
  6. Boulpaep, E.L., Sackin, H. 1980. Electrical analysis of intraepithelial barriers.Curr. Top. Membr. Trans. 13:169–197Google Scholar
  7. Caroni, P., Carafoli, E. 1982. Modulation by calcium of the potassium permeability of dog heart sarcolemmal vesicles.Proc. Natl. Acad. Sci. USA 79:5763–5767Google Scholar
  8. Cican, M.M. 1978. Intracellular activities of sodium and potassium.Am. J. Physiol. 234:F261-F264Google Scholar
  9. Cican, M.M. 1980. Potassium activities in epithelia.Fed. Proc. 39:2865–2870Google Scholar
  10. Cotton, C., Gatzy, J. 1982. Electrolytes and sodium uptake in disaggregated canine tracheal epithelial cells.Fed. Proc. 41:1260Google Scholar
  11. Davis, W.C., Finn, A.L. 1982. Sodium transport inhibition by amiloride reduces basolateral membrane potassium conductance in tight epithelia.Science 216:525–527Google Scholar
  12. DeLong, J., Civan, M.M. 1978. Dissociation of cellular K+ accumulation from net Na+ transport by toad urinary bladder.J. Membrane Biol. 42:19–43Google Scholar
  13. DeLong, J., Civan, M.M. 1980. Intracellular chemical activity of potassium in toad urinary bladder.Curr. Top. Membr. Transp. 13:93–105Google Scholar
  14. Frizzell, R.A., Field, M., Schultz, S.G. 1979. Sodium-coupled chloride transport by epithelial tissues.Am. J. Physiol. 236:F1-F8Google Scholar
  15. Fujimoto, M., Kazuyo, N., Kubota, T. 1980. Electrochemical profile for ion transport across the membrane of proximal tubule cells.Membr. Biochem. 3:67–97Google Scholar
  16. Fujimoto, M., Kubota, T. 1976. Physiochemical properties of a liquid ion exchanger microelectrode and its application to biological fluids.Jpn. J. Physiol. 26:631–650Google Scholar
  17. Gunter-Smith, P.J., Grasset, E., Schultz, S.G. 1982. Sodium-coupled amino acid and sugar transport byNecturus small intestine: An equivalent electrical circuit analysis of a rheogenic co-transport system.J. Membrane Biol. 66:25–39Google Scholar
  18. Helman, S.I., Fisher, R.S. 1977. Microelectrode studies of the active Na transport pathway of frog skin.J. Gen. Physiol. 69:571–604Google Scholar
  19. Helman, S.I., Nagel, W., Fisher, R.S. 1979. Ouabain on active transepithelial sodium transport in frog skin. Studies with microelectrodes.J. Gen. Physiol. 74:105–127Google Scholar
  20. Higgins, J.T., Gebler, B., Fromter, E. 1977. Electrical properties of amphibian urinary bladder. II. The cell potential profile inNecturus maculosa.Pfluegers Arch. 371:87–97Google Scholar
  21. Khuri, R.N., Agulian, S.K., Kalloghlian, A. 1972. Intracellular potassium in cells of the distal tubule.Pfluegers Arch. 335:297–308Google Scholar
  22. Kimura, G., Fujimoto, M. 1977. Estimation of the physical state of potassium in frog bladder cells by ion exchange microelectrode.Jpn. J. Physiol. 27:291–303Google Scholar
  23. Lee, C.O., Armstrong, W.McD. 1972. Activities of sodium and potassium ions in epithelial cells of small intestine.Science 175:1261–1264Google Scholar
  24. Lew, V.L., Ferreira, H.G. 1976. Variable Ca sensitivity of a K-selective channel in intact red-cell membranes.Nature (London) 263:336–338Google Scholar
  25. Lewis, S.A., Wills, N.K., Eaton, D.C. 1978. Basolateral membrane potential of a tight epithelium: Ionic diffusion and electrogenic pumps.J. Membrane Biol. 41:117–148Google Scholar
  26. Meech, R.W. 1978. Calcium-dependent potassium activation in nervous tissues.Annu. Rev. Biophys. Bioeng. 1:1–18Google Scholar
  27. Miller, S.S., Steinberg, R.H. 1977. Passive ionic properties of frog retinal pigment epithelium.J. Membrane Biol. 36:337–372Google Scholar
  28. Nagel, W. 1979. Inhibition of potassium conductance by barium in frog skin epithelium.Biochim. Biophys. Acta 552:346–357Google Scholar
  29. Olver, R.E., Davis, B., Marin, M.G., Nadel, J.A. 1975. Active transport of Na+ and Cl across the canine tracheal epithelium.Am. Rev. Respir. Dis. 112:811–815Google Scholar
  30. Palmer, L.G., Century, T.J., Civan, M.M. 1978. Activity coefficients of intracellular Na+ and K+ during development of frog oocytes.J. Membrane Biol. 40:25–38Google Scholar
  31. Palmer, L.G., Civan, M.M. 1975. Intracellular distribution of free-potassium inChironomus salivary glands.Science 188:1321–1322Google Scholar
  32. Palmer, L.G., Civan, M.M. 1977. Distribution of Na+, K+, and Cl between nucleus and cytoplasm inChironomus salivary gland cells.J. Membrane Biol. 33:41–61Google Scholar
  33. Ramsay, A.G., Gallagher, D.L., Shoemaker, R.L., Sachs, G. 1976. Barium inhibition of sodium ion transport in toad bladder.Biochim. Biophys. Acta 436:617–627Google Scholar
  34. Reuss, L., Weinman, S.A. 1979. Intracellular ionic activities and transmembrane electrochemical potential differences in gallbladder epithelium.J. Membrane Biol. 49:345–362Google Scholar
  35. Schultz, S.G. 1974. Principles of electrophysiology and their application to epithelial tissues.In: Gastrointestinal Physiology. E.D. Jacobson and C.S. Shanbour, editors. Vol. 4, p. 69. University Park Press, BaltimoreGoogle Scholar
  36. Schultz, S.G. 1981. Homocellular regulatory mechanisms in sodium-transporting epithelia: Avoidance of extinction by “flush through.”Am. J. Physiol. 241:F579-F590Google Scholar
  37. Shorofsky, S.R., Field, M., Fozzard, H.A. 1983. Electrophysiology of Cl secretion in canine trachea.J. Membrane Biol. 72:105–115Google Scholar
  38. Smith, P.L., Frizzell, R.A. 1982. Changes in intracellular K activities after stimulation of Cl secretion in canine tracheal epithelium.Chest 81:5SGoogle Scholar
  39. Smith, P.L., Welsh, M.J., Stoff, J.S., Frizzell, R.A. 1982. Chloride secretion by canine tracheal epithelium: I. Role of intracellular cAMP levels.J. Membrane Biol. 70:217–226Google Scholar
  40. Welsh, M.J. 1983. Evidence for a basolateral membrane K conductance in canine tracheal epithelium.Am. J. Physiol. 244 (5:C377-C384Google Scholar
  41. Welsh, M.J., Smith, P.L., Frizzell, R.A. 1982. Chloride secretion by canine tracheal epithelium: II. The cellular electrical potential profile.J. Membrane Biol. 70:227–238Google Scholar
  42. Welsh, M.J., Smith, P.L., Frizzell, R.A. 1983. Chloride secretion by canine tracheal epithelium: III. Membrane resistances and electromotive forces.J. Membrane Biol. 71:209–218Google Scholar
  43. Westenfelder, C., Earnest, W.R., Al-Bazzar, F.J. 1980. Characterization of Na−K-ATPase in dog tracheal epithelium: Enzymatic and ion transport measurements.J. Appl. Physiol. 48:1008–1019Google Scholar
  44. White, J.F. 1976. Intracellular potassium activities inAmphiuma small intestine.Am. J. Physiol. 231:1214–1219Google Scholar
  45. Widdicombe, J.H., Basbaum, C.B., Highland, E. 1981. Ion contents and other properties of isolated cells from dog tracheal epithelium.Am. J. Physiol. 241:C184-C192Google Scholar
  46. Widdicombe, J.H., Basbaum, C.B., Yee, J.Y. 1979. Localization of Na pumps in the tracheal epithelium of the dog.J. Cell Biol. 82:380–390Google Scholar
  47. Widdicombe, J.H., Welsh, M.J. 1980. Ion transport by dog tracheal epithelium.Fed. Proc. 39:3062–3066Google Scholar
  48. Yonath, J., Civan, M.M. 1971. Determination of the driving force of the Na+ pump in toad bladder by means of vasopressin.J. Membrane Biol. 5:366–385Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Philip L. Smith
    • 1
    • 2
  • Raymond A. Frizzell
    • 1
    • 2
  1. 1.Department of PhysiologyUniversity of Kansas Medical CenterKansas City
  2. 2.Department of Physiology and BiophysicsUniversity of Alabama in BirminghamBirmingham

Personalised recommendations