Journal of Biological Physics

, Volume 12, Issue 4, pp 85–92 | Cite as

Divalent cation effects on membrane bending in heated erythrocytes

  • W. T. Coakley
  • F. A. Doulah


The thermal fragmentation of human erythrocytes involves either surface wave growth and membrane externalization at the cell rim or membrane internalization at the cell dimple. In symmetrical monovalent electrolytes an increase in membrane internalization at the cell dimple correlates with the decrease in zeta potential arising from surface charge (sialic acid residue) depletion. The influence of divalent cations on thermal fragmentation is examined in this work. The erythrocyte zeta potential decreased when divalent cations replaced some Na+ in the cell-suspending phase. The incidence of membrane internalization increased in rank order Ca2+>Ba2+>Mg2+≥Sr2+. Calcium continued to influence the thermal fragmentation of cells highly depleted of sialic acid, suggesting that the ion also interacted with membrane sites other than sialic acid. The divalent cation influence on cell fragmentation was shown to be greater than that due to zeta potential decrease alone. This conclusion was supported by the observation that the divalent cation-induced changes in zeta potential showed much less cation specificity than did the changes induced in the thermal fragmentation pattern. The result implies that the specificity of the divalent cation effects was due to interactions within the erythrocyte shear layer. The possibility that the interaction is with membrane lipids is examined.


Surface Wave Zeta Potential Sialic Acid Shear Layer Divalent Cation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allan, D.; Billah, M.M.; Finean, J.B.; Michell, R.H. 1975.Nature 258, 348–349.Google Scholar
  2. Borgers, M.; Thone, F.J.M.; Xhonneuz, B.J.M.; Clerck, F.F.P. 1983.J. Histol. Cytol. 31, 1109–1116.Google Scholar
  3. Brandts, J.F.; Erickson, L.; Lysko, K.; Schwartz, A.T.; Taverna, R.D. 1977.Biochemistry 16, 3450–3454.CrossRefGoogle Scholar
  4. Coakley, W.T.; Deeley, J.O.T. 1980.Biochim. Biophys. Acta 602, 355–375.Google Scholar
  5. Cohen, C.M.; Solomon, A.K. 1976.J. Membr. Biol. 29, 345–372.Google Scholar
  6. Colbow, K.; Avrmovic-Zikic, O.; Wessel, S. 1981.J. Colloid Interface Sci. 82, 233–239.Google Scholar
  7. Deeley, J.O.T.; Coakley, W.T. 1983.Biochim. Biophys. Acta 727, 293–302.Google Scholar
  8. Donath, E., Pastushenko, V. 1980.Bioelectrochem. Bioenerg. 7, 31–40.Google Scholar
  9. Doulah, F.A.; Coakley, W.T.; Tilley, D. 1984.J. Biol. Phys. In Press.Google Scholar
  10. Edmondson, J.W.; Li, T.K. 1978.Biochim. Biophys. Acta 443, 106–113.Google Scholar
  11. Hammoudah, M.M.; Nir, S.; Bentz, J.; Mayhew, E.; Steward, T.P.; Hui, S.W.; Kurland, R.J. 1981.Biochim. Biophys. Acta 645, 102–114.Google Scholar
  12. Hauser, H.; Hinckley, C.C.; Krebbs, J.; Levine, B.A.; Phillipps, M.C.; Williams, R.J.P. 1977.Biochim. Biophys. Acta 468, 364–377.Google Scholar
  13. Hoffman, J.F.; Laris, P.C. 1974.J. Physiol. (London)239, 514–552.Google Scholar
  14. Lau, A.; McLaughlin, A.; McLaughlin, S. 1981.Biochim. Biophys. Acta 645, 279–292.Google Scholar
  15. Lis, L.J.; Rand, R.P.; Parsegian, V.A. 1980. In:Bioelectrochemistry, Ions, Surface Membranes. Advances in Chemistry Series 188 (M. Blank, Ed.), American Chemical Society, Washington, pp. 41–47.Google Scholar
  16. Long, C.; Mouat, B. 1971.Biochem. J. 123, 829–836.PubMedGoogle Scholar
  17. McLaughlin, A.; Grathwohl, C.; McLaughlin, S. 1978.Biochim. Biophys. Acta 513, 338–357.PubMedGoogle Scholar
  18. Newton, C.; Pangborn, W.; Nir, S.; Papahadjopoulos, D. 1978.Biochim. Biophys. Acta 506, 281–287.PubMedGoogle Scholar
  19. Ohki, S.; Kurland, R. 1981.Biochim. Biophys. Acta 645, 170–176.Google Scholar
  20. Op Den Kamp, J.A.F. 1981. In:Membrane Structure J.B. Finean and R.H. Michell, Eds.), Elsevier, (Amsterdam, pp. 83–126.Google Scholar
  21. Papahadjopoulos, D. 1968.Biochim. Biophys. Acta 163, 240–254.PubMedGoogle Scholar
  22. Schultze, M. 1865.Arch. Mikrosk. Anat. 1, 1–42.Google Scholar
  23. Sheetz, M.P. 1977. In:Cell Shape and Surface Architecture (J.P. Revel, U. Henning and C.P. Fox, Eds.), Alan R. Liss, New York, pp. 559–567.Google Scholar
  24. Sokal, R.R.; Rohlf, F.J. 1981.Biometry, Freeman, San Francisco.Google Scholar
  25. Wagner, S.; Keith, A.; Sniper, W. 1980.Biochim. Biophys. Acta 600, 367–375.Google Scholar

Copyright information

© Forum Press, Inc. 1984

Authors and Affiliations

  • W. T. Coakley
    • 1
  • F. A. Doulah
    • 1
  1. 1.Department of MicrobiologyUniversity CollegeCardiffWales, U.K.

Personalised recommendations