Skip to main content
Log in

Time dependence of the effect ofp-chloromercuribenzoate on erythrocyte water permeability: A pulsed nuclear magnetic resonance study

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Pulsed nuclear magnetic resonance spectroscopy is employed to determine the time dependence of the change in erythrocyte water permeability following exposure top-chloromercuribenzoate (PCMB) orp-chloromercuribenzene sulfonic acid (PCMBS). pH variation was used to examine the environment of the sulfhydryl groups reactive to these drugs. PCMB reacted with at least two sulfhydryl groups which affect water permeability. This was shown by the double exponential character of the change in erythrocyte diffusional permeability with time after PCMB addition. However, only one inhibition rate process could be distinguished following PCMBS exposure, suggesting that one site bound by PCMB is not accessible to PCMBS. This site is postulated to be located in a hydrophobic region of the membrane, whereas the site reached by both drugs is located in the normal anion permeation channel. The effect of pH on the degree of inhibition due to each component and the inhibition rates is explained in terms of its effect on solubility of the reagents in the membrane and variation of the dissociated-to-undissociated ratio of PCMB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benesch, R., Benesch, R.E. 1962. Determination of SH groups in proteins.In: Methods of Biochemical Analysis. D. Glick, editor. Vol. 10, pp. 43–70. Interscience, New York

    Google Scholar 

  2. Brown, P.A., Feinstein, M.B., Sha'afi, R.I. 1975. Membrane proteins related to water transport in human erythrocytes.Nature (London) 254:523–525

    Google Scholar 

  3. Carr, H.Y., Purcell, E.M. 1954. Effects of diffusion on free precession in nuclear magnetic resonance experiments.Phys. Rev. 94:630–638

    Google Scholar 

  4. Chien, D.Y., Macey, R.I. 1977. Diffusional water permeability of red cells. Independence on osmolality.Biochim. Biophys. Acta 464:45–52

    PubMed  Google Scholar 

  5. Conlon, T., Outhred, R. 1978. The temperature dependence of erythrocyte water diffusion permeability.Biochim. Biophys. Acta 511:408–418

    PubMed  Google Scholar 

  6. Fabry, M.E., Eisenstadt, M. 1975. Water exchange between red cells and plasma.Biophys. J. 15:1101–1110

    PubMed  Google Scholar 

  7. Forster, R.E. 1971. The transport of water in erythrocytes.Curr. Top. Membr. Trans. 2:41–98

    Google Scholar 

  8. Giberman, E. 1973. Determination of the trapped volume in a pellet of red blood cells.Experientia 29:1083–1085

    PubMed  Google Scholar 

  9. Godin, D.V., Schrier, S.L. 1972. Modification of the erythrocyte membrane by sulfhydryl group reagents.J. Membrane Biol. 7:285–312

    Google Scholar 

  10. Hazelwood, C.F., Chang, D.C., Nichols, B.L., Woessner, D.E. 1974. Nuclear magnetic resonance transverse relaxation times of water protons in skeletal muscle.Biophys. J. 14:583–606

    PubMed  Google Scholar 

  11. Jacobs, H.S., Jandl, J.H. 1962. Effects of sulfhydryl inhibition on red blood cells. I. Mechanism of hemolysis.J. Clin. Invest. 41:779–792

    PubMed  Google Scholar 

  12. Knauf, P.A., Rothstein, A. 1971. Chemical modification of membranes. I. Effects of sulfhydryl and amino reactive reagents on anion and cation permeability of the human red blood cell.J. Gen. Physiol. 58:190–210

    PubMed  Google Scholar 

  13. Knauf, P.A., Rothstein, A. 1971. Chemical modification of membranes. II. Permeation paths for sulfhydryl agents.J. Gen. Physiol. 58:211–223

    PubMed  Google Scholar 

  14. Liu, S., Fairbanks, G., Palek, J. 1977. Spontaneous, reversible protein cross-linking in the human erythrocyte membrane. Temperature and pH dependence.Biochemistry 16:4066–4074

    PubMed  Google Scholar 

  15. Macey, R.I., Farmer, R.E.L. 1970. Inhibition of water and solute permeability in human red cells.Biochim. Biophys. Acta 211:104–106

    PubMed  Google Scholar 

  16. Macey, R.I., Karan, D.M., Farmer, R.E.L. 1972. Properties of water channels in human red cells.In: Passive Permeability of Cell Membranes. F. Kreuzer and J.F.G. Slegers, editors. pp. 331–340. Plenum, New York

    Google Scholar 

  17. Meiboom, S., Gill, D. 1958. Modified spin-echo method for measuring nuclear relaxation times.Rev. Sci. Instr. 29:688–691

    Google Scholar 

  18. Naccache, P., Sha'afi, R.I. 1974. Effect of PCMBS on water transfer across biological membranes.J. Cell. Physiol. 83:449–456

    Google Scholar 

  19. Pirkle, J.L., Ashley, D.L., Goldstein, J.H. 1979. Pulse nuclear magnetic resonance measurements of water exhange across the erythrocyte membrane employing a low Mn concentration.Biophys. J. 25:389–406

    PubMed  Google Scholar 

  20. Provencher, S.W. 1976. A Fourier method for the analysis of exponential decay curves.Biophys. J. 16:27–41

    PubMed  Google Scholar 

  21. Rich, G.T., Sha'afi, R.I., Romualdez, A., Solomon, A.K. 1968. Effect of osmolality on the hydraulic permeability coefficient of red cells.J. Gen. Physiol. 52:941–954

    Google Scholar 

  22. Rothstein, A. 1970. Sulfhydryl groups in membrane structure and function.In: Current Topics in Membranes and Transport. F. Bronner and A. Kleinzeller, editors, Vol. 1; pp. 135–176. Academic Press, New York

    Google Scholar 

  23. Rothstein, A., Takeshita, M., Knauf, P.A., 1972. Chemical modification of proteins involved in the permeability of the erythrocyte membrane to ions.In: Passive Permeability of Cell Membranes. F. Kreuzer and J.F.G. Slegers, editors. pp. 393–413. Plenum Press, New York

    Google Scholar 

  24. Sandberg, H.E., Bryant, R.G., Piette, L.H. 1969. Studies on the location of sulfhydryl groups in erythrocyte membranes with magnetic resonance spin probes.Arch. Biochem. Biophys. 133:144–152

    PubMed  Google Scholar 

  25. Sha'afi, R.I. 1977. Water and nonelectrolyte permeation in red cells.In: Membrane Transport in Red Cells. J.C. Ellory and V.L. Lew, editors, pp. 221–256. Academic Press, New York

    Google Scholar 

  26. Smith, B.D., Lacelle, P.L. 1979. Parallel decrease of erythrocyte membrane deformability and spectrin solubility at low pH.Blood 53:15–18

    PubMed  Google Scholar 

  27. Sutherland, R.M., Rothstein, A., Weed, R.I. 1969. Erythrocyte membrane sulfhydryl groups and cation permeability.J. Cell. Physiol. 69:185–198

    Google Scholar 

  28. VanSteveninck, J., Weed, R.I., Rothstein, A. 1965. Localization of erythrocyte membrane sulfhydryl groups essential for glucose transport.J. Gen. Physiol. 48:617–632

    PubMed  Google Scholar 

  29. Weed, R.I., Rothstein, A. 1960. The uptake of divalent manganese ion by mature normal human red blood cells.J. Gen. Physiol. 44:301–314

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashley, D.L., Goldstein, J.H. Time dependence of the effect ofp-chloromercuribenzoate on erythrocyte water permeability: A pulsed nuclear magnetic resonance study. J. Membrain Biol. 61, 199–207 (1981). https://doi.org/10.1007/BF01870524

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870524

Key words

Navigation