Advertisement

The Journal of Membrane Biology

, Volume 61, Issue 3, pp 155–172 | Cite as

Regulation of passive potassium transport of normal and transformed 3T3 mouse cell cultures by external calcium concentration and temperature

  • M. Ernst
  • G. Adam
Articles

Summary

Regulation of passive potassium ion transport by the external calcium concentration and temperature was studied on cell cultures of 3T3 mouse cells and their DNA-virus transformed derivatives. Upon lowering of external calcium concentration, passive potassium efflux generally exhibits a sharp increase at about 0.1mm. The fraction of calcium-regulated potassium efflux is largely independent of temperature in the cases of the transformed cells, but shows a sharp increase for 3T3 cells upon increasing temperature above 32°C. In the same range of temperature, the 3T3 cells exhibit the phenomenon of high-temperature inactivation of the residual potassium efflux at 1mm external calcium. At comparable cellular growth densities, the transformed cell lines do not show high-temperature inactivation of “residual” potassium efflux. These results are consistent with the notion of a decisive role of the internal K+ concentration in the cell-density dependent regulation of cell proliferation. In particular, the growth-inhibiting effect of lowering the external Ca2+ concentrations is considered as largely due to a rise of passive K+ efflux and a subsequent decrease of internal K+ concentration. The experimental data on the Ca2+ dependence of passive K+ flux are quantitatively described by a theoretical model based on the constant field relations including negative surface charges on the external face of the membrane, which cooperatively bind Ca2+ ions and may concomitantly undergo a lateral redistribution. The present evidence is consistent with acidic phospholipids as representing these negative surface charges.

Key words

K+-transport Ca2+-effects 3T3 cells cell proliferation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, G. 1967. Nervenerregung als kooperativer Kationenaustausch in einem zweidimensionalen Gitter.Ber. Bunsenges. Phys. Chem. 71:829–831Google Scholar
  2. Adam, G. 1968. Ionenstrom nach einem depolarisierenden Sprung im Membranpotential.Z. Naturforsch. 23b:181–197Google Scholar
  3. Adam, G. 1970. Theory of nerve excitation as a cooperative cation exchange in a two-dimensional lattice.In: Physical Principles of Biological Membranes. F. Snell, J. Wolken, G. Iversen, and J. Lam, editors. pp. 35–64. Gordon and Breach Science Publishers, New YorkGoogle Scholar
  4. Adam, G. 1973. Cooperative transitions in biological membranes.In: Synergetics. H. Haken, editor. pp. 220–231. B.G. Teubner, StuttgartGoogle Scholar
  5. Adam, G., Adam, G. 1975. Cell surface charge and regulation of cell division of 3T3 cells and transformed derivatives.Exp. Cell Res. 93:71–78PubMedGoogle Scholar
  6. Adam, G., Ernst, M., Seher, J.-P. 1979. Regulation of passive membrane permeability for potassium ions by cell density of 3T3 and SV40-3T3 cells.Exp. Cell Res. 120:127–139PubMedGoogle Scholar
  7. Adam, G., Läuger, P., Stark, G. 1977. Physikalische Chemie und Biophysik. p. 311ff. Springer Verlag, Berlin-Heidelberg-New YorkGoogle Scholar
  8. Balk, S.D. 1971. Stimulation of the proliferation of chicken fibroblasts by folic acid or a serum factor in a plasma containing medium.Proc. Natl. Acad. Sci. USA 68:1689–1692PubMedGoogle Scholar
  9. Balk, S.D., Polimeni, P.I., Hoon, B.S., LeStourgeon, D.N., Mitchell, R.S. 1979. Proliferation of Rous sarcoma virus-infected, but not of normal, chicken fibroblasts in a medium of reduced calcium and magnesium concentration.Proc. Natl. Acad. Sci USA 76:3913–3916PubMedGoogle Scholar
  10. Balk, S.D., Whitfield, J.F., Youdale, T., Braun, A.C. 1973. Roles of calcium, serum, plasma, and folic acid in the control of proliferation of normal and Rous sarcoma virus-infected chicken fibroblasts.Proc. Natl. Acad. Sci. USA 70:675–679PubMedGoogle Scholar
  11. Bamberg, E., Janko, K. 1976. Single channel conductance at lipid bilayer membranes in presence of monazomycin.Biochim. Biophys. Acta 426:447–450PubMedGoogle Scholar
  12. Bamberg, E., Läuger, P. 1974. Temperature-dependent properties of gramicidin A channels.Biochim. Biophys. Acta 367:127PubMedGoogle Scholar
  13. Banerjee, S.P., Bosmann, H.B. 1976. Rubidium transport and ouabain binding in normal and virally transformed mouse fibroblasts.Exp. Cell Res. 100:153–158PubMedGoogle Scholar
  14. Boheim, G., Hanke, W., Eibl, H.-J. 1980. Lipid phase transition in planar bilayer membrane and its effect on carrier and pore mediated ion transport.Proc. Natl. Acad. Sci. USA 77:3403–3407PubMedGoogle Scholar
  15. van der Bosch, J., Sommer, I., Maier, H., Rahmig, W. 1979. Density-dependent growth adaptation kinetics in 3T3 cell populations following suddent [Ca2+] and temperature changes. A comparison with SV40-3T3 cells.Z. Naturforsch. 34c:279–283Google Scholar
  16. Bourne, H.R., Rosengurt, E. 1976. An 18,000 molecular weight polypeptide induces early events and stimulates DNA synthesis in cultured cells.Proc. Natl. Acad. Sci. USA 73:4555–4559PubMedGoogle Scholar
  17. Bowen-Pope, D.F., Vidair, C., Sanui, H., Rubin, A.H. 1979. Separate roles for calcium and magnesium in their synergistic effect on uridine uptake by cultured cells: Significance of growth control.Proc. Natl. Acad. Sci. USA 76:1308–1312PubMedGoogle Scholar
  18. Boynton, A.L., Whitfield, J.F. 1976a. Different calcium requirements for roliferation of conditionally and unconditionally tumorigenic mouse cells.Proc. Natl. Acad. Sci. USA 73:1651–1654PubMedGoogle Scholar
  19. Boynton, A.L., Whitfield, J.F. 1976b. The different actions of normal and supranormal calcium concentrations on the proliferation of BALB/c 3T3 mouse cells.In Vitro 12:479–484PubMedGoogle Scholar
  20. Boynton, A.L., Whitfield, J.F., Isaacs, R.J., Tremblay, R. 1977. The control of human WI-38 cell proliferation by extracellular calcium and its elimination by SV-40 virus-induced proliferative transformation.J. Cell. Physiol. 92:241–248PubMedGoogle Scholar
  21. Cammann, K. 1973. Das Arbeiten mit ionenselektiven Elektroden. p. 134. Springer-Verlag, BerlinGoogle Scholar
  22. Cone, C.D., Jr., Tongier, M., Jr. 1974. Contact inhibition of division: Involvement of the electrical transmembrane potential.J. Cell. Physiol. 82:373–386Google Scholar
  23. Curran, P.F., Herrera, F.C., Flanigan, W.J. 1963. The effect of Ca and antidiuretic hormone on Na transport across frog skin. II. Sites and mechanism of action.J. Gen. Physiol. 46:1011–1027Google Scholar
  24. Dijck, P.W.M. van, Kruijff, B. de, Verkleij, A.J., Deenen, L.L.M. van, Gier, J. de 1978. Comparative studies on the effects of pH and Ca2+ on bilayers of various negatively charged phospholipids and their mixtures with phosphatidyl-choline.Biochim. Biophys. Acta 512:84–96PubMedGoogle Scholar
  25. Ducouret-Prigent, B., Lelievre, L., Paraf A., Kepes, A. 1975. Relationship between intracellular K+ concentrations and K+ fluxes in growing and contact-inhibited cells.Biochim. Biophys. Acta 401:119–127PubMedGoogle Scholar
  26. Dubecco, R., Elkington, J. 1975. Induction of growth in resting fibroblastic cell cultures by Ca++ Proc. Natl. Acad. Sci. USA 72:1584–1588PubMedGoogle Scholar
  27. Eisenberg, M., Gresalfi, T., Riccio, T., McLaughlin, S. 1979. The adsorption of monovalent cations to bilayer membranes containing negative phospholipids.Biochemistry 18:5213–5223PubMedGoogle Scholar
  28. Elligsen, J.D., Thompson, J.E., Frey, H.E., Kruuv, J. 1976. Correlation of (Na+−K+)ATPase activity with growth of normal and transformed cells.Exp. Cell Res. 87:233–240Google Scholar
  29. Ernst, M., Adam, G. 1978. High-temperature inactivation of passive potassium transport in electrically non-excitable cells.Z. Naturforsch. 33c:937–940Google Scholar
  30. Ernst, M., Adam, G. 1979. Dependence of intracellular alkali-ion concentrations of 3T3 and SV40-3T3 cells on growth density.Cytobiologie 18:450–459PubMedGoogle Scholar
  31. Esfahani, M., Limbrick, A.R., Knutton, S., Oka, T., Wakil, S.J. 1972. The molecular organization of lipids in the membrane ofE. coli: Phase transitions.Proc. Natl. Acad. Sci. USA 68:3180Google Scholar
  32. Frank, W. 1973. Stimulation of embryonic rat cells in culture by calf serum: VI. Calcium and potassium ions as cofactors.Z. Naturforsch. 28c:322–328Google Scholar
  33. Garrahan, P.J., Glynn, I.M. 1967. The behaviour of the sodium pump in red cells in the absence of external potassium.J. Physiol. (London) 192:159–174Google Scholar
  34. Geyer, R.P., Sholtz, K.J., Bowie, E.J. 1955. Influence of calcium on potassium concentration in rat liverin vitro.Am. J. Physiol. 182:487–492PubMedGoogle Scholar
  35. Gilbert, I.G.F. 1972. The effect of divalent cations on the ionic permeability of cell membranes in normal and tumour tissues.Eur. J. Cancer 8:99–105PubMedGoogle Scholar
  36. Grisham, C.M., Barnett, R.E. 1973. The role of lipid-phase transition in the regulation of the (sodium+potassium) adenosine triphosphatase.Biochemistry 12:2635–2637PubMedGoogle Scholar
  37. Guggenheim, E.A. 1952. Mixtures. p 29ff. Clarendon Press, OxfordGoogle Scholar
  38. Hauser, H., Darke, A., Phillips, M.C. 1976. Ion binding to phospholipids. Interaction of calcium with phosphatidyl serine.Eur. J. Biochem. 62:335–344PubMedGoogle Scholar
  39. Hazelton, B., Mitchell, B., Tupper, J.T. 1979. Calcium, magnesium, and growth control in the WI-38 human fibroblast cell.J. Cell Biol. 83:487–498PubMedGoogle Scholar
  40. Hazelton, B.J., Tupper, J.T. 1979. Calcium transport and exchange in mouse 3T3 and SV40-3T3 cells.J. Cell Biol. 81:538–543PubMedGoogle Scholar
  41. Hendricksen, H.S., Reinertsen, J.L. 1971. Phosphoinositide interconversion: A model for control of Na+ and K+ permeability in the nerve axon membrane.Biochem. Biophys. Res. Commun. 44:1258–1264PubMedGoogle Scholar
  42. Hodgkin, A.L., Keynes, R.D. 1957. Movements of labelled calcium in squid giant axons.J. Physiol. (London) 138:253–281Google Scholar
  43. Hoeven, R.P. van, Emmelot, P., Krol, J.H., Oomen-Meulemans, E.P.M. 1975. Studies on plasma membranes. XXII. Fatty acid profiles of lipid classes in plasma membranes of rat and mouse livers and hepatomas.Biochim. Biophys. Acta 380:1–11PubMedGoogle Scholar
  44. Ito, T., Ohnishi, S., Ishinaga, M., Kito, M. 1975. Synthesis of a new phosphatidylserine spin-label and calcium-induced lateral phase separation in phosphatidylserine-phosphatidylcholine membranes.Biochemistry 14:3064–3069PubMedGoogle Scholar
  45. Jacobson, K., Papahadjopoulos, D. 1975. Phase transitions and phase separations in phospholipid membranes induced by changes in temperature, pH, and concentration of bivalent cations.Biochemistry 14:152–161Google Scholar
  46. Kalant, H., Hickie, R.A. 1968. Effects of divalent cations on K+ transport in liver and morris hepatoma 5123 tc.Cancer Res. 28:2086–2091PubMedGoogle Scholar
  47. Kaplan, J.G. 1977. The role of cation flux in triggering and maintaining the stimulated state in lymphocytes.In: Regulatory Mechanisms of Lymphocyte Activation. D.O. Lucas, editor. p. 51 ff. Academic Press, New YorkGoogle Scholar
  48. Kasarov, L. B., Friedman, H. 1974. Enhanced Na+-K+-activated adenosine triphosphate activity in transformed fibroblasts.Cancer Res. 34:1862–1865PubMedGoogle Scholar
  49. Kimelberg, H.K. 1977. The influence of membrane fluidity on the activity of membrane-bound enzymes.In: Dynamic Aspects of Cell Surface Organization. G. Poste and G.L. Nicolson, editors. pp. 205–293. Elsevier, AmsterdamGoogle Scholar
  50. Kimelberg, H.K., Mayhew, E. 1975. Increased ouabain-sensitive86Rb+ uptake and sodium and potassium ion-activated adenosine triphosphatase activity in transformed cell lines.J. Biol. Chem. 250:100–104Google Scholar
  51. Kimelberg, H.K., Mayhew, E. 1976. Cell growth and ouabain-sensitive86Rb+ uptake and (Na+−K+)-ATPase activity in 3T3 and SV40 transformed 3T3 fibroblasts.Biochim. Biophys. Acta 455:865–875PubMedGoogle Scholar
  52. Kimelberg, H.K., Papahadjopoulos, D. 1972. Phospholipid requirements for (Na+−K+)-ATPase activity: head-group specificity and fatty acid fluidity.Biochim. Biophys. Acta 282:277–292PubMedGoogle Scholar
  53. Kimelberg, H.K., Papahadjopoulos, D. 1974. Effects of phospholipid acyl chain fluidity, phase transition and cholesterol on (Na+−K+)-stimulated adenosine triphosphatase.J. Biol. Chem. 249:1071–1080Google Scholar
  54. Kleinzeller, A., Knotková, A., Nedvidkova, J. 1968. The effect of calcium ions on the steady-state ionic distributions in kidney cortex cells.J. Gen. Physiol. 51:326s-334sPubMedGoogle Scholar
  55. Koch, K.S., Leffert, H.L. 1979. Increased sodium ion influx is necessary to initiate rat hepatocyte proliferation.Cell 18:153–163PubMedGoogle Scholar
  56. Kolb, H.A., Adam, G. 1976. Regulation of ion permeabilities of isolated rat liver cells by external calcium concentration and temperature.J. Membrane Biol. 26:121–151Google Scholar
  57. Kruijff, B. de, Gerritsen, W.J., Oerlemans, A., Dijck, P.W.M. van, Demel, R.A., Deenen, L.L.M. van 1974. Polyene antibioticsterol interactions in membranes of Acholeplasma laidlawii cells and lecithin liposomes. II. Temperature dependence.Biochim. Biophys. Acta 339:44–56PubMedGoogle Scholar
  58. Lamb, J.F., McCall, P. 1972. Effect of prolonged ouabain treatment on Na, K, Cl, and Ca concentration and fluxes in cultured human cells.J. Physiol. (London) 225:599–617Google Scholar
  59. Ledbetter, M.L.S., Lubin, M. 1977. Control of protein synthesis in human fibroblasts by intracellular potassium.Exp. Cell Res. 105:223–236PubMedGoogle Scholar
  60. Ledbetter, M.L.S., Lubin, M. 1979. Transfer of potassium. A new measure of cell-cell coupling.J. Cell Biol. 80:150–165PubMedGoogle Scholar
  61. Lee, A.G. 1977. Lipid phase transitions and phase diagrams. II. Mixtures involving lipids.Biochim. Biophys. Acta 472:285–344PubMedGoogle Scholar
  62. Linden, C.D., Wright, K.L., McConnell, H.M., Fox, C.F. 1973. Lateral phase separations in membrane lipids and the mechanism of sugar transport inEscherichia coli.Proc. Natl. Acad. Sci. USA 70:2271–2275PubMedGoogle Scholar
  63. Loewenstein, W.R. 1967. Cell surface membranes in close contact. Role of calcium and magnesium ions.J. Colloid Interface Sci. 25:34–46PubMedGoogle Scholar
  64. Lubin, M. 1967. Intracellular potassium and macromolecular synthesis in mammalian cells.Nature (London) 213:451–453Google Scholar
  65. Marcum, J.M., Dedman, J.R., Brinkley, B.R., Means, A.R. 1978. Control of microtubule assembly-disassembly by calcium-dependent regulator protein.Proc. Natl. Acad. Sci. USA 75:3771–3775PubMedGoogle Scholar
  66. McDonald, T.F., Sachs, H.G., Orr, C.W., Ebert, J.D. 1972. Multiple effects of ouabain on BHK cells.Exp. Cell Res. 74:201–206PubMedGoogle Scholar
  67. McKeehan, W.L., Ham, R.G. 1978. Calcium and magnesium ions and the regulation of multiplication in normal and transformed cells.Nature (London) 275:756–758Google Scholar
  68. McLaughlin, S., Harary, H. 1974. Phospholipid flip-flop and the distribution of surface charges in excitable membranes.Biophys. J. 14:200–209PubMedGoogle Scholar
  69. Means, A.R., Dedman, J.R. 1980. Calmodulin—An intracellular calcium receptor.Nature (London) 285:73–77Google Scholar
  70. Michell, R.H. 1975. Inositol phospholipids and cell surface receptor function.Biochim. Biophys. Acta 415:81–147PubMedGoogle Scholar
  71. Micklem, K.J., Abra, R.M., Knutton, S., Graham, J.M., Pasternak, C.A. 1976. The fluidity of normal and virus-transformed cell plasma membrane.Biochem. J. 154:561–566PubMedGoogle Scholar
  72. Morril, G.A., Kaback, H.R., Robbins, E. 1964. Effect of calcium on intracellular sodium and potassium concentrations in plant and animal cells.Nature (London) 204:641–462Google Scholar
  73. Newton, C., Pangborn, W., Nir, S., Papahadjopoulos, D. 1978. Specificity of Ca2+ and Mg2+ binding to phosphatidylserine vesicles and resultant phase changes of bilayer membrane structure.Biochim. Biophys. Acta 506:281–287PubMedGoogle Scholar
  74. Ohnishi, S., Ito, T. 1973. Clustering of lecithin molecules in phosphatidylserine membranes induced by Ca++-binding to phosphatidylserine.Biochem. Biophys. Res. Commun. 51:132–138PubMedGoogle Scholar
  75. Ohnishi, S., Ito, T. 1974. Calcium-induced phase separations in phosphatidylserine-phosphatidylcholine membranes.Biochemistry 13:881–887Google Scholar
  76. Overath, P., Schairer, H.U., Stoffel, W. 1970. Correlation ofin vivo andin vitro phase transitions of membrane lipids inEscherichia coli.Proc. Natl. Acad. Sci. USA 67:606–612PubMedGoogle Scholar
  77. Papahadjopoulos, D. 1968. Surface properties of acidic phospholipids: Interaction of monolayers and hydrated liquid crystals with uni- and bi-valent metal ions.Biochim. Biophys. Acta 163:240–254PubMedGoogle Scholar
  78. Papahadjopoulos, D., Poste, G., Schaeffer, B.E., Vail, W.J. 1974. Membrane fusion and molecular segregation in phospholipid vesicles.Biochim. Biophys. Acta 352:10–28PubMedGoogle Scholar
  79. Papahadjopoulos, D., Vail, W.J., Newton, C., Nir, S., Jacobson, K., Poste, G., Lazo, R. 1977. Studies on membrane fusion. III. The role of calcium-induced phase changes.Biochim. Biophys. Acta 465:579–598PubMedGoogle Scholar
  80. Paul, D., Ristow, H.J. 1979. Cell cycle control by Ca++-ions in mouse 3T3 cells and in transformed 3T3 cells.J. Cell. Physiol. 98:31–40PubMedGoogle Scholar
  81. Perkins, R.G., Scott, R.E. 1978. Differences in the phospholipid, cholesterol, and fatty acyl composition of 3T3 and SV3T3 plasma membranes.Lipids 13:653–657PubMedGoogle Scholar
  82. Pollack, M., Fisher, H.W. 1976. Dissociation of ribonucleic acid and protein synthesis in mammalian cells deprived of potassium.Arch. Biochem. Biophys. 172:188–190Google Scholar
  83. Priestland, R.N., Whittam, R. 1972. The temperature dependence of activation by phosphatidylserine of the sodium pump adenosine triphosphatase.J. Physiol. (London) 220:353–361Google Scholar
  84. Quissel, D.O., Suttie, J.W. 1973. Effect of fluoride and other metabolic inhibitors on intracellular sodium and potassium concentrations in L cells.J. Cell. Physiol. 82:59–64PubMedGoogle Scholar
  85. Rixon, R.H., Whitfield, J.F. 1976. The control of liver regeneration by parathyroid hormone and calcium.J. Cell Physiol. 87:147–156Google Scholar
  86. Rosengurt, E., Heppel, L.A. 1975. Serum rapidly stimulates ouabain-sensitive86Rb+ influx in quiescent 3T3 cells.Proc. Natl. Acad. Sci. USA 72:4492–4495PubMedGoogle Scholar
  87. Rosengurt, E., Legg, A., Pettican, P. 1979. Vasopressin stimulation of mouse 3T3 cell growth.Proc. Natl. Acad. Sci USA 76:1284–1287PubMedGoogle Scholar
  88. Roufogalis, B.D. 1980. Calmodulin: Its role in synaptic transmission.Trens Neuro-Sci. Oct.:238–241Google Scholar
  89. Rubin, A.H., Terasaki, M., Sanui, H. 1978. Magnesium reverses inhibitory effects of calcium deprivation on coordinate response of 3T3 cells to serum.Proc. Natl. Acad. Sci. USA 75:4379–4383PubMedGoogle Scholar
  90. Rubin, A.H., Terasaki, M., Sanui, H. 1979. Major intracellular cations and growth control Correspondence among magnesium content, protein synthesis, and the onset of DNA synthesis in Balb/c 3T3 cells.Proc. Natl. Acad. Sci. USA 76:3917–3921PubMedGoogle Scholar
  91. Sanui, H., Rubin, A.H. 1979. Measurement of total, intracellular and surface bound cations in animal cells grown in culture.J. Cell. Physiol. 100:215–226PubMedGoogle Scholar
  92. Schairer, H.U., Overath, P. 1969. Lipids containing trans-unsuturated fatty acids change the temperature characteristic of thiomethylgalactoside accumulation inEscherichia coli.J. Mol. Biol. 44:209–214PubMedGoogle Scholar
  93. Schreier, M.H., Stähelin, T. 1973. Initiation of mammalian protein synthesis: The importance of ribosome and initiation factor quality for the efficiency ofin vitro systems.J. Mol. Biol. 73:329–349PubMedGoogle Scholar
  94. Seher, J.P., Adam, G. 1978. Dependence of cellular surface area on growth density of 3T3 and SV40-3T3 cells.Z. Naturforsch.33c:739–743Google Scholar
  95. Shank, B.B., Smith, N.E. 1976. Regulation of cellular growth by sodium pump activity.J. Cell. Physiol. 87:377–388PubMedGoogle Scholar
  96. Smith, J.B., Rosengurt, E. 1978a. Lithium transport by fibroblastic mouse cells: Characterization and stimulation by serum and growth factors in quiescent culture.J. Cell. Physiol. 97:441–450PubMedGoogle Scholar
  97. Smith, J.B., Rosengurt, E. 1978b. Serum stimulates the Na+, K+ pump in quiescent fibroblasts by increasing Na+ entry.Proc. Natl. Acad. Sci. USA 75:5560–5564PubMedGoogle Scholar
  98. Spaggiare, S., Wallach, M.H., Tupper, J.T. 1976. Potassium transport in normal and transformed mouse 3T3 cells.J. Cell. Physiol. 89:403–416PubMedGoogle Scholar
  99. Sutherland, E.W. 1972. Studies on the mechanism of hormone action.Science 177:401–408PubMedGoogle Scholar
  100. Swierenga, S.H.H., MacManus, J.P., Whitfield, J.F. 1976. Regulation by calcium of the proliferation of heart cells from young adult rats.In Vitro 12:31–36PubMedGoogle Scholar
  101. Thilo, L., Träuble, H., Overath, P. 1977. Mechanistic, interpretation of the influence of lipid phase transitions on transport functions.Biochemistry 16:1283–1290PubMedGoogle Scholar
  102. Träuble, H., Eibl, H. 1974. Electrostatic, effects on lipid phase transitions. Membrane structure and ionic environment.Proc. Natl. Acad. Sci. USA 71:214–219PubMedGoogle Scholar
  103. Träuble, H., Overath, P. 1973. The structure ofEscherichia coli membranes studied by fluorescence measurement of lipid phase transitions.Biochim. Biophys. Acta 307:491–512PubMedGoogle Scholar
  104. Tupper, J.T., Del Rosso, M., Hazelton, B., Zorgniotti, F. 1978. Serum-stimulated changes in calcium transport and distribution in mouse 3T3 cells and their modification by dibutyryl cyclic AMP.J. Cell. Physiol. 95:71–84PubMedGoogle Scholar
  105. Tupper, J.T., Zografos, L. 1978. Effect of imposed serum deprivation on growth of the mouse 3T3 cell.Biochem. J. 174:1063–1065PubMedGoogle Scholar
  106. Tupper, J.T., Zorgniotti, F. 1977. Calcium content and distribution as a function of growth and transformation in the mouse 3T3 cell.J. Cell Biol. 75:12–22PubMedGoogle Scholar
  107. Tupper, J.T., Zorgniotti, F., Mills, B. 1977. Potassium transport and content during G1 and S phase following serum stimulation of 3T3 cells.J. Cell. Physiol. 91:429–440PubMedGoogle Scholar
  108. Vannucci, S., Del Rosso, M., Cella, C., Urbano, P., Chiarugi, V. 1978. Surface glycosaminoglycans and calcium distribution in 3T3 cells.Biochem. J. 170:185–187PubMedGoogle Scholar
  109. Whitfield, J.F., MacManus, J.P., Rixon, R.H., Boynton, A.L., Youdale, T., Swierenga, S. 1976. The positive control of cell proliferation by the interplay of calcium ions and cyclic nucleotides. A review.In Vitro 12:1–18PubMedGoogle Scholar
  110. Whitfield, J.F., Rixon, R.H., Perris, A.D., Youdale, T. 1969. Stimulation by calcium of the entry of thymic lymphocytes into the deoxyribonucleic acid-synthetic (S) phase of the cell cycle.Exp. Cell Res. 57:8–12PubMedGoogle Scholar
  111. Wilson, G., Rose, S.P., Fox, C.F. 1970. The effect of membrane lipid unsaturation on glycoside transport.Biochem. Biophys. Res. Commun. 38:617–623PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1981

Authors and Affiliations

  • M. Ernst
    • 1
  • G. Adam
    • 1
  1. 1.Fakultät für BiologieUniversität KonstanzW. Germany

Personalised recommendations