The Journal of Membrane Biology

, Volume 65, Issue 1–2, pp 99–109 | Cite as

K+ transport in ‘Tight’ epithelial monolayers of MDCK cells

  • J. F. Aiton
  • C. D. A. Brown
  • P. Ogden
  • N. L. Simmons


Bidirectional transepithelial K+ flux measurements across ‘high-resistance’ epithelial monolayers of MDCK cells grown upon millipore filters show no significant net K+ flux.

Measurements of influx and efflux across the basal-lateral and apical cell membranes demonstrate that the apical membranes are effectively impermeable to K+.

K+ influx across the basal-lateral cell membranes consists of an ouabain-sensitive component, an ouabain-insensitive component, an ouabain-insensitive but furosemide-sensitive component, and an ouabain-and furosemide-insensitive component.

The action of furosemide upon K+ influx is independent of (Na+−K+)-pump inhibition. The furosemide-sensitive component is markedly dependent upon the medium K+, Na+ and Cl content. Acetate and nitrate are ineffective substitutes for Cl, whereas Br is partially effective. Partial Cl replacement by NO3 gives a roughly linear increase in the furosemide-sensitive component. Na+ replacement by choline abolishes the furosemide-sensitive component, whereas Li+ is a partially effective replacement. Partial Na+ replacement with choline gives an apparent affinity of ∼7mm Na, whereas variation of the external K+ content gives an affinity of the furosemide-sensitive component of 1.0mm.

Furosemide inhibition is of high affinity (K1/2=3 μm). Piretanide, ethacrynic acid, and phloretin inhibit the same component of passive K+ influx as furosemide; amiloride, 4,-aminopyridine, and 2,4,6-triaminopyrimidine partially so. SITS was ineffective.

Externally applied furosemide and Cl replacement by NO 3 inhibit K+ efflux across the basal-lateral membranes indicating that the furosemide-sensitive component consists primarily of K∶K exchange.

Key words

K+ fluxes MDCK ouabain furosemide cultured epithelium Na++K++Cl cotransport 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aiton, J.F., Chipperfield, A.R., Lamb, J.F., Ogden, P., Simmons, N.L. 1981. Passive K influx in cultured cells: Na and Cl dependence and furosemide sensitivity.J. Physiol. (London) 310:20P Google Scholar
  2. Aiton, J.F., Lamb, J.F. 1980. The effect of exogenous adenosine triphosphate on potassium movements in HeLa cells.Q. J. Expt. Physiol. 64:47–62Google Scholar
  3. Bakker-Grunwald, T. 1978. Effect of anions on potassium selfexchange in ascites tumour cells.Biochim. Biophys. Acta 513:292–295Google Scholar
  4. Bakker-Grunwald, T. 1981. Hormone-induced diuretic-sensitive potassium transport in turkey erythrocytes is anion dependent.Biochim. Biophys. Acta 641:289–293Google Scholar
  5. Barker, G., Simmons, N.L. 1981. Identification of two strains of cultured canine renal epithelial cells (MDCK cells) which display entirely different physiological properties.Q. J. Expt Physiol. 66:61–72Google Scholar
  6. Boardman, L., Huett, M., Lamb, J.F., Newton, J.P., Polson, J.M. 1974. Evidence for the genetic control of Na pump density in HeLa cells.J. Physiol. (London) 241:771–794Google Scholar
  7. Brown, C.D.A., Simmons, N.L. 1981. K+ transport in cultured renal cells of canine origin.J. Physiol. (London) 319:99P Google Scholar
  8. Burrows, R., Lamb, J.F. 1962. Sodium and potassium fluxes in cells cultured from chick embryo heart muscle.J. Physiol. (London) 162:510–531Google Scholar
  9. Cereijido, M., Robbins, E.S., Dolan, W.J., Rotunno, C.A. Sabatini, D.D. 1978. Polarised monolayers formed by epithelial cells on a permeable and translucent support.J. Cell Biol. 77:853–880Google Scholar
  10. Chipperfield, A.R. 1980. An effect of chloride on (Na+K) cotransport in human red cells.Nature (London) 286:281–282Google Scholar
  11. Chipperfield, A.R. 1981. Chloride dependence of frusemide and phloretin-sensitive passive sodium and potassium fluxes in human red cells.J. Physiol. (London) 312:435–444Google Scholar
  12. Civan, M.M. 1980. Potassium activities in epithelia.Fed. Proc. 39:2865–2870Google Scholar
  13. Cuthbert, A.W., Shum, W.K. 1974. Binding of amiloride to sodium channels in frog skin.Mol. Pharmacol. 10:880–891Google Scholar
  14. Dunham, P.B., Stewart, G.W., Ellory, J.C. 1980. Chloride-activated passive potassium transport in human erythrocytes.Proc. Natl. Acad. Sci. USA 77:1711–1715Google Scholar
  15. Fromter, E., Gebler, B. 1977. Electrical properties of amphibian urinary bladder epithelia.Pfluegers Arch. 371:99–108Google Scholar
  16. Geck, P., Heinz, E., Pietrzyk, C., Pfeiffer, B. 1978. The effect of furosemide on the ouabain-insensitive K+ and Cl movement in Ehrlich cells.In: Cell Membrane Receptors for Drugs and Hormones R.W. Straub and I. Bolis, editors. pp. 301–307. Raven Press, New YorkGoogle Scholar
  17. Geck, P., Pietrzyk, C., Burckhardt, B.C., Pfeiffer, B., Heinz, E. 1980. Electrically silent cotransport of Na+, K+ and Cl in Ehrlich cells.Biochim. Biophys. Acta 600:432–437Google Scholar
  18. Giebisch, G. 1979. Renal tubular control of potassium transport.Klin. Wochenschr 57:1001–1008Google Scholar
  19. Giebisch, G., Stanton, B. 1979. Potassium transport in the nephron.Annu. Rev. Physiol. 41:241–256Google Scholar
  20. Jorgenson, P.L. 1980. Sodium and potassium ion pump in kidney tubules.Physiol Rev. 60:864–917Google Scholar
  21. Koefoed-Johnsen, V., Ussing, H.H. 1958. The nature of the frog skin potential.Acta Physiol. Scand. 42:298–308Google Scholar
  22. Lamb, J.F., Ogden, P., Simmons, N.L. 1981. Autoradiographic localisation of3H-ouabain bound to cultured epithelial cell monolayers of MDCK cells.Biochim. Biophys. Acta 646:333–340Google Scholar
  23. Lewis, S.A., Eaton, C.D., Clausen, C., Diamond, J. 1977. Nystatin as a probe for investigating the electrical properties of a tight epithelium.J. Gen. Physiol. 70:427–440Google Scholar
  24. Naftalin, R.J., Simmons, N.L. 1979. The effects of theophylline and choleragen on sodium and chloride movements within isolated rabbit ileum.J. Physiol. (London) 290:331–350Google Scholar
  25. Nellans, H.N., Schultz, S.G. 1976. Relations among transepithelial sodium transport, potassium exchange, and cell volume in rabbit ileum.J. Gen. Physiol. 68:441–463Google Scholar
  26. Richardson, J.C.W., Scalera, V., Simmons, N.L. 1981. Identification of two strains of MDCK cells which resemble separate nephron tubule segments.Biochim. Biophys. Acta 673:26–36Google Scholar
  27. Rindler, N.J., McRoberts, J., Saier, M.H. 1980. Na+−K+ cotransport in dog kidney epithelial cells (MDCK).J. Supramol. Struct. 4:86Google Scholar
  28. Simmons, N.L. 1979. Ion transport in high-resistance dog-kidney cell monolayers, the effect of adenosine 5′ triphosphate.J. Physiol. (London) 290:28PGoogle Scholar
  29. Simmons, N.L. 1981a. Ion transport in ‘tight’ epithelial monolayers of MDCK cells.J. Membrane Biol. 59:105–114Google Scholar
  30. Simmons, N.L. 1981b. The action of ouabain upon chloride secretion in cultured MDCK epithelium.Biochim. Biophys. Acta 646:243–250Google Scholar
  31. Simmons, N.L., Naftalin, R.J. 1976. Bidirectional Na ion movements via the paracellular and transcellular routes across shortcircuited rabbit ileum.Biochim. Biophys. Acta 448:426–450Google Scholar
  32. Snedecor, G.W., Cochran, W.G. 1968. Statistical Methods. pp. 135–136. Iowa State University Press, AmesGoogle Scholar
  33. Wiley, J.S., Cooper, R.A. 1974. A furosemide-sensitive cotransport of sodium plus potassium in the human red cell.J. Clin. Invest. 53:745–755Google Scholar

Copyright information

© Springer-Verlag New York Inc 1982

Authors and Affiliations

  • J. F. Aiton
    • 1
  • C. D. A. Brown
    • 1
  • P. Ogden
    • 1
  • N. L. Simmons
    • 1
  1. 1.The Department of PhysiologyUniversity of St.AndrewsSt.AndrewsScotland

Personalised recommendations