Skip to main content
Log in

Activation of osmolyte efflux from cultured renal papillary epithelial cells

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The rabbit renal papillary epithelial cell line PAP-HT25 accumulates sorbitol and other organic osmolytes when cultured in hypertonic media. When returned to isotonic media, PAP-HT25 cells swell because of water influx and then shrink to their normal volume because of rapid osmolyte and water efflux (volume regulatory decrease, VRD). Sorbitol efflux from PAP-HT25 cells during VRD was reduced to 18% of control by incubation of the cells with 100 μm eicosatetraynoic acid (ETYA), indicating that an enzyme that metabolizes arachidonic acid (AA) is a key component of the efflux process. Sorbitol efflux was unaffected by incubation with cyclooxygenase and lipoxygenase inhibitors but was reduced to 9% by incubation with 100 μm ketoconazole and to 37% by incubation with 100 μm SKF-525A, indicating that the cytochrome P-450 limb of the AA cascade is involved in the efflux process. The efflux of other organic osmolytes betaine and myoinositol, but not glycerolphosphorylcholine, was also inhibited by incubation with ETYA and ketoconazole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bagnasco, S., Balaban, R., Fales, H. M., Yang, Y., Burg, M. 1986. Predominant osmotically active organic solutes in rat and rabbit renal medullas.J. Biol. Chem. 261:5872–5877

    Google Scholar 

  2. Bagnasco, S. M., Murphy, H. R., Bedford, J. J., Burg, M. B. 1988. Osmoregulation by slow changes in aldose reductase and rapid changes in sorbitol flux.Am. J. Physiol. 254:C788-C792

    Google Scholar 

  3. Bagnasco, S. M., Uchida, S., Balaban, R. S., Kador, P. F., Burg, M. B. 1987. Induction of aldose and sorbitol in renal inner medullary cells by elevated extracellular NaCl.Proc. Natl. Acad. Sci. USA 84:1718–1720

    Google Scholar 

  4. Beetens, J. R., Loots, W., Somers, Y., Coene, M. C., De Clerck, F. 1986. Ketoconazole inhibits the biosynthesis of leukotrienes in vitro and in vivo.Biochem. Pharmacol. 35:883–891

    Google Scholar 

  5. Ben-Gigi, G., Polacheck, I., Eilam, Y. 1988. In vitro synergistic activity of ketoconazole with trifluoperazine and with chlorpromazine against medically important yeasts.Chemotherapy 34:96–100

    Google Scholar 

  6. Bevan, C., Thiess, C., Kinne, R. K. H., 1990. Role of Ca2+ in sorbitol release from rat inner medullary collecting duct (IMCD) cells under hypoosmotic stress.Biochem. Biophys. Res. Commun. 170:563–568

    Google Scholar 

  7. Glain, J. A., Shearer, G. 1965. Inhibition of soya lipoxidase.J. Sci. Food Agri. 16:273–378

    Google Scholar 

  8. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein dye binding.Anal. Biochem. 72:248–254

    Google Scholar 

  9. Capdevila, J., Gil, L., Orellana, M., Marnett, L. J., Mason, I., Yadagiri, P., Falck, J. R. 1988. Inhibitors of cytochrome P-450-dependent arachidonic acid metabolism.Arch. Biochem. Biophys. 261:257–263

    Google Scholar 

  10. Carroll, M. A., Louzan, M., McGiff, J. C. 1990. K+ alters cytochrome P-450-dependent arachidonate metabolism by rabbit renomedullary cells.Am. J. Physiol. 258:F1084-F1089

    Google Scholar 

  11. Corey, E. J., Munroe, J. E. 1982. Irreversible inhibition of prostaglandin and leukotriene biosynthesis from arachidonic acid by 11,12-dehydro- and 5,6-dehydroarachidonic acids, respectively.J. Am. Chem. Soc. 104:1752–1754

    Google Scholar 

  12. Corey, E. J., Park, H. 1982. Irreversible inhibition of the enzymic oxidation of arachidonic acid to 15-(hydroperoxy)-5,8,11(Z),13(E)-eicosatetraenoic acid (15-HPETE) by 14,15-dehydroarachidonic acid.J. Am. Chem. Soc. 104:1750–1752

    Google Scholar 

  13. Downing, D. T., Ahern, D. G., Bachta, M. 1970. Enzyme inhibition by acetylenic compounds.Biochem. Biophys. Res. Commun. 40:218–223

    Google Scholar 

  14. Escalente, B., Falck, J. R., Yadagiri, P., Sun, L., Laniado-Schwartzman, M. 1988. 19(S)-Hydroeicosatetraenoic acid is a potent stimulator of renal Na+ K+ ATPase.Biochem. Biophys. Res. Commun. 152:1269–1274

    Google Scholar 

  15. Fitzpatrick, F. A., Murphy, R. C. 1989. Cytochrome P-450 metabolites of arachidonic acid: Formation and biologic actions of “epoxygenase”-derived eicosanoids.Pharmacol. Rev. 40:229–241

    Google Scholar 

  16. Garcia-Perez, A., Burg, M. B. 1991. Renal medullary organic osmolytes.Physiol. Rev. (in press)

  17. Garty, H., Furlong, T. J., Ellis, D. E., Spring, K. R. 1991. The sorbitol permease: An apical membrane transporter in cultured renal papillary epithelial cells.Am. J. Physiol. 260:F650-F656

    Google Scholar 

  18. Grunewald, R. W., Kinne, R. K. H. 1989. Intracellular sorbitol content in isolated rat inner medullary collecting duct cells.Pfluegers Arch. 414:178–184

    Google Scholar 

  19. Hammarstrom, S. 1977. Selective inhibition of plateletn-8 lipoxygenase by 5,8,11-eicosatriynoic acid.Biochem. Biophys. Res. Commun. 487:517–519

    Google Scholar 

  20. Henrich, W. L., Falck, J. R., Campbell, W. B. 1990. Inhibition of renin release by 14,15-epoxyeicosatrienoic acid in renal cortical slices.Am. J. Physiol. 258:E269-E274

    Google Scholar 

  21. Hoffman, E. K., Simonson, L. O. 1989. Membrane mechanisms in volume and pH regulation in vertebrate cells.Physiol. Rev. 69:315–382

    Google Scholar 

  22. Irvine, R. F. 1982. How is the level of free arachidonic acid controlled in mammalian cells?Biochem. J. 204:3–16

    Google Scholar 

  23. Laposata, M., Kaiser, S. L., Reich, E. L., Majerus, P. W. 1987. Eicosadiynoic acid: A nontoxic inhibitor of multiple enzymatic steps in the production of icosanoids from arachidonic acid.Prostaglandins 33:603–613

    Google Scholar 

  24. Moriyama, T., Garcia-Perez, A., Burg, M. B. 1990. Factors affecting the ratio of the different organic osmolytes in renal medullary cells.Am. J. Physiol. 259:F847-F858

    Google Scholar 

  25. Morrison, A. R., Pascoe, N. 1981. metabolism of arachidonate through NADPH-dependent oxygenase of renal cortex.Proc. Natl. Acad. Sci. USA 78:7375–7378

    Google Scholar 

  26. Nakanishi, T., Balaban, R. S., Burg, M. B. 1988. Survey of osmolytes in renal cell lines.Am. J. Physiol. 24:C181-C191

    Google Scholar 

  27. Nakanishi, T., Burg, M.B. 1989. Osmoregulation of glycerophosphorylcholine content of mammalian renal cells.Am. J. Physiol. 257:C795-C801

    Google Scholar 

  28. Nakanishi, T., Turner, R. J., Burg, M. B. 1989. Osmoregulatory changes in myoinositol transport by renal cells.Proc. Natl. Acad. Sci. USA 86:6002–6006

    Google Scholar 

  29. Nakanishi, T., Turner, R. J., Burg, M. B. 1990. Osmoregulation of betaine transport in mammalian renal medullary cells.Am. J. Physiol. 258:F1061-F1067

    Google Scholar 

  30. Needleman, P., Turk, J., Jakschik, B. A., Morrison, A. R., Lefkowith, J. B. 1986. Arachidonic acid metabolism.Annu. Rev. Biochem. 55:69–102

    Google Scholar 

  31. Oesch, F., Bently, P., Golan, M., Stasiecki, P. 1985. Metabolism of benzo(a)pyrene by subcellular fractions of rat liver: evidence for similar patterns of cytochrome P-450 in rough and smooth endoplasmic reticulum but not in nuclei and plasma membrane.Cancer Res. 45:4838–4843

    Google Scholar 

  32. Oliw, E. H., Lawson, J. A., Brash, A. R., Oates, J. A. 1981. Arachidonic acid metabolism in rabbit renal cortex.J. biol. Chem. 256:9924–9931

    Google Scholar 

  33. Oliw, E. H., Moldeus, P. 1982. Metabolism of arachidonic acid by isolated rat hepatocytes, renal cells, and by some rabbit tissues.Biochim. Biophys. Acta 721:135–143

    Google Scholar 

  34. Oliw, E. H., Oates, J.A. 1981. Rabbit renal cortical microsomes metabolize arachidonic acid to trihydroxyeicosatrienoic acids.Prostaglandins 22:863–871

    Google Scholar 

  35. Orning, L., Hammarstrom, S. 1980. Inhibition of leukotriene C and leukotriene D biosynthesis.J. Biol. Chem. 255:8023–8026

    Google Scholar 

  36. Rouzer, C. A., Ford-Hutchinson, A. W., Morton, H. E., Gillard, J. W. 1990. MK886, a potent and specific leukotriene biosynthesis inhibitor blocks and reverses the membrane association of 5-lipoxygenase in ionophore challenged leukocytes.J. Biol. Chem. 265:1436–1442

    Google Scholar 

  37. Salari, H., Braquet, P., Borgeat, P. 1984. Comparative effects of indomethacin, acetylenic acids, 15-HETE, nordihydroguaiaretic acid, and BW755C on the metabolism of arachidonic acid in human leukocytes and platelets.Prostaglandins Leukotrienes Med. 13:53–60

    Google Scholar 

  38. Samples, D. R., Sprague, E. A., Harper, M. J. K., Herlihy, J. T. 1989. In vitro adsorption losses of arachidonic acid and calcium ionophore A23187.Am. J. Physiol. 257:C1166–1170

    Google Scholar 

  39. Schlondorff, D., Petty, E., Oates, J. 1987. Epoxygenase metabolites of arachidonic acid inhibit vasopressin response in toad bladder.Am. J. Physiol. 253:F464-F470

    Google Scholar 

  40. Schwartzman, M., Ferreri, N. R., Carroll, M. A., Songu-Mize, E., Mcgiff, J. C. 1985. Renal cytochrome P-450-related arachidonate metabolite inhibits Na+−K+ ATPase.Nature 314:620–622

    Google Scholar 

  41. Siebens, A. W., Spring, K. R. 1989. A novel sorbitol transport mechanism in cultured renal papillary epithelial cells.Am. J. Physiol. 257:F937-F946

    Google Scholar 

  42. Sok, D.-E., Han, C.-R., Pai, J.-K., Sih, C. J. 1982. Inhibition of leukotriene biosynthesis by acetylenic analogs.Biochem. Biophys. Res. Commun. 107:101–108

    Google Scholar 

  43. Sonino, N. 1987. The use of ketoconazole as an inhibitor of steroid production.N. Engl. J. Med. 317:812–818

    Google Scholar 

  44. Stasiecki, P., Oesch, F. 1980. Distribution of enzymes involved in metabolism of polycyclic aromatic hydrocarbons among rat liver endomembranes and plasma membranes.Eur. J. Cell Biol. 21:79–92

    Google Scholar 

  45. Takahashi, K., Capdevila, J., Karara, A., Falck, J., Jacobson, H. R., Badr, K. F. 1990. Cytochrome P-450 arachidonate metabolites in rat kidney: I. Characterization and hemodynamic responses.Am. J. Physiol. 258:F781-F789

    Google Scholar 

  46. Taylor, A. S., Morrison, A. R., Russell, J. H. 1985. Incorporation of 5,8,11,14-eicosatetraynoic acid (ETYA) into cell lipids: Competition with arachidonic acid for esterification.Prostaglandins 29:449–458

    Google Scholar 

  47. Tobias, L. D., Hamilton, J. G. 1979. The effect of 5,8,11,14-eicosatetraynoic acid on lipid metabolism.Lipids 14:181–193

    Google Scholar 

  48. Uchida, S., Green, N., Coon, H., Triche, T., Mims, S., Burg, M. 1987. High NaCl induces stable changes in phenotype and karyotype of renal cells in culture.Am. J. Physiol. 22:C230-C242

    Google Scholar 

  49. Waite, M. 1987. Phospholipases. Handbook of Lipid Research. Vol. 5. Plenum, New York

    Google Scholar 

  50. Wolff, S. D., Yancey, P. H., Stanton, T. H., Balaban, R. S. 1989. A simple HPLC method for quantitating major organic solutes of renal medulla.Am. J. Physiol. 256:F954-F956

    Google Scholar 

  51. Zablocki, K., Miller, S. P. F., Garcia-Perez, A., Burg, M. B. 1990. Inhibition of GPC degradation causes its accumulation in osmotically stressed renal cells.J. Am. Soc. Nephrol. 1:710 (abstr.)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furlong, T.J., Moriyama, T. & Spring, K.R. Activation of osmolyte efflux from cultured renal papillary epithelial cells. J. Membrain Biol. 123, 269–277 (1991). https://doi.org/10.1007/BF01870410

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870410

Key Words

Navigation