The Journal of Membrane Biology

, Volume 34, Issue 1, pp 351–368 | Cite as

Hydrophobicity of biosurfaces as shown by chemoreceptive Thresholds inTetrahymena, Physarum andNitella

  • Tetsuo Ueda
  • Yonosuke Kobatake


Responses (chemotaxis and changes in membrane potential) ofTetrahymena, Physarum, andNitella against aqueous solution of homologous series ofn-alcohols,n-aldehydes andn-fatty acids were studied for clarifying the hydrophobic character of chemoreceptive membranes. Results were: (1) All organisms studied responded to homologous compounds examined when the concentration of these chemicals exceeded their respective threshold,C th , and the response,R, were expressed approximately asR=α log (C/C th ) forC>C th , (2) Increase of the length of hydrocarbon chain in homologues decreasedC th . Plots of logC th against the number of carbon atoms,n, inn-alcohols,n-aldehydes andn-fatty acids showed linear relationships as represented by logC th =−An+B. A andB are positive constants for respective functional end groups of the chemicals and biological membranes used. The above empirical equation was interpreted in terms of the partition equilibrium of methylene groups between bulk solution and membrane phase. ParameterA was shown to be a measure of hydrophobicity of the membrane, andB represented the sensitivity of chemoreception of the membrane. (3) Thresholds,C th , for various hydrophobic reagents were compared with those of human olfactory reception,T. Plots of logT against logC th fell on straight lines for respective organisms with different slopes which were proportional to parameterA.


Hydrocarbon Membrane Potential Positive Constant Empirical Equation Biological Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adler, J., Epstein, W., 1974. Phosphotransferase-systems as chemoreceptors for certain sugars inEscherichia coli chemotaxis.Proc. Nat. Acad. Sci. USA 71:2895PubMedGoogle Scholar
  2. 2.
    Aksamit, R.R., Koshland, D.E., Jr. 1974. Identification of the ribose binding protein as the receptor for ribose chemotaxis inSalmonella typhimurium.Biochemistry 13:4473PubMedGoogle Scholar
  3. 3.
    Ashton, E.H., Eayrs, J.T., Moulton, D.G. 1957. Olfactory activity in the dog.Nature (London) 179:1069Google Scholar
  4. 4.
    Beidler, L.M. 1971. Handbook of Sensory Physiology: Chemical Senses 1. Olfaction. Springer-Verlag, BerlinGoogle Scholar
  5. 5.
    Camp, W.G. 1936. A method of cultivating myxomycete plasmodia.Bull. Torrey Bot. Club. 63:205Google Scholar
  6. 6.
    Dastoli, F.R., Price, S. 1966. Sweet-sensitive protein from bovine taste buds: Isolation and assay.Science 154:905PubMedGoogle Scholar
  7. 7.
    Davies, J.T. 1950. The mechanism of diffusion of ions across a phase boundary and through cell walls.J. Phys. Chem. 54:185Google Scholar
  8. 8.
    Davies, J.T., Taylor, F.H. 1954. A model for the olfactory membrane.Nature (London) 174:693Google Scholar
  9. 9.
    Davies, J.T., Taylor, F.H. 1959. The role of adsorption and molecular morphology in olfaction: The calculation of olfactory thresholds.Biol. Bull. Woods Hole 177:222Google Scholar
  10. 10.
    Dethier, V.G. 1954. Olfactory response of blowflies to aliphatic aldehydes.J. Gen. Physiol. 37:743PubMedGoogle Scholar
  11. 11.
    Dethier, V.G., Yost, M.G. 1951. Olfactory stimulation of blowflies by homologous alcohols.J. Gen. Physiol. 35:823Google Scholar
  12. 12.
    Dryl, S. 1959. Chemotaxis and toxic effects of lower alcohols onParamecium caudatum.Acta Biol. Exp. 19:95Google Scholar
  13. 13.
    Eldefrawi, M.E., Eldefrawi, A.T. 1973. Purification and molecular properties of the acetylcholine receptor forTorpedo electroplax.Arch. Biochem. Biophys. 159:362PubMedGoogle Scholar
  14. 14.
    Hansen, K. 1974. α-Glucosidases as sugar receptor proteins in flies.In: Biochemistry of Sensory Functions. L. Jaenicke, editor. pp. 207–233. Springer-Verlag, BerlinGoogle Scholar
  15. 15.
    Hazelbauer, G.L., Adler, J. 1971. Role of the galactose binding protein in chemotaxis ofEscherichia coli toward galactose.Nature New Biol. 230:101PubMedGoogle Scholar
  16. 16.
    Hersh, L.S. 1971. Cellular narcosis and hydrophobic bonding.In: The Chemistry of Biosurfaces. M.L. Hair, editor. pp. 349–376. Marcell Dekker, New YorkGoogle Scholar
  17. 17.
    Hiji, Y., Kobayashi, N., Sato, M. 1971. Sweet-sensitive protein from the rat tongue: Its interaction with various sugars.Comp. Biochem. Physiol. 39 B:367Google Scholar
  18. 18.
    Hill, D.L. 1972. Biochemistry and Physiology ofTetrahymena. Academic Press, New York and LondonGoogle Scholar
  19. 19.
    Kamiya, N. 1942. Physical aspects of protoplasmic streaming.In: The Structure of Protoplasm. W. Seifriz, editor. pp. 199–244. Iowa State University Press, Ames, IowaGoogle Scholar
  20. 20.
    Kamiya, N. 1959. Protoplasmic streaming.Protoplasmatologia 8(3a):1Google Scholar
  21. 21.
    Kamiya, N. 1968. The mechanism of cytoplasmic movement in a myxomycete plasmodium.In: Aspects of Cell Motility. pp. 199–214. Cambridge University Press, CambridgeGoogle Scholar
  22. 22.
    Kawabata, K., Kijima, H., Shiraishi, A., Morita, H. 1973. α-Glucosidase isozymes and the labellar sugar receptor of the blowfly.J. Insect Physiol. 19:337PubMedGoogle Scholar
  23. 23.
    Koyama, N., Kurihara, K. 1972. Effect of odorants on lipid monolayers from bovine olfactory epithelium.Nature (London) 236:402Google Scholar
  24. 24.
    Meunier, J.C., Seelock, R., Olsen, R., Changeux, J.P. 1974. Purification and properties of the cholinergic receptor protein fromElectrophorus electricus electric tissue.Eur. J. Biochem. 45:371PubMedGoogle Scholar
  25. 25.
    Moulton, D.G., Eayrs, J.T. 1960. Studies in olfactory activity. II. Relative detectability ofn-aliphatic alcohols by the rat.Q. J. Exp. Psychol. 12:99Google Scholar
  26. 26.
    Ottoson, D. 1958. Studies on the relationship between olfactory stimulating effectiveness and physico-chemical properties of odorous compounds.Acta Physiol. Scand. 43:167PubMedGoogle Scholar
  27. 27.
    Raftery, M.A., Bode, J., Vandlen, R., Chao, Y., Deutsch, J., Duguid, J.R., Reed, K., Moody, T. 1974. Characterization of an acetylcholine receptor.In: Biochemistry of Sensory Functions. L. Jaenicke, editor. pp. 541–564. Springer-Verlag, BerlinGoogle Scholar
  28. 28.
    Seeman, P. 1972. The membrane actions of anesthetics and tranquilizers.Pharmacol. Rev. 24:583PubMedGoogle Scholar
  29. 29.
    Tazawa, M. 1964. Studies onNitella having artificial cell sap: part I. Replacement of the cell sap with artificial solutions.Plant Cell Physiol. 3:33Google Scholar
  30. 30.
    Tso, W.W., Adler, J. 1974. Negative chemotaxis inEscherichia coli.J. Bacteriol. 118:560PubMedGoogle Scholar
  31. 31.
    Ueda, T., Kurihara, K., Kobatake, Y. 1976a. Response ofNitella internodal cell to chemical stimulation: A model for olfactory receptor system.J. Membrane Biol. 25:271Google Scholar
  32. 32.
    Ueda, T., Muratsugu, M., Kurihara, K., Kobatake, Y. 1975a. Olfactory response in excitable protoplasmic droplet and internodal cell ofNitella.Nature (London) 253:629Google Scholar
  33. 33.
    Ueda, T., Muratsugu, M., Kurihara, K., Kobatake, Y. 1976b. Chemotaxis inPhysarum polycephalum: Effects of chemicals on isometric tension of the plasmoidal strand in relation to chemotactic movements.Exp. Cell Res. 100:337PubMedGoogle Scholar
  34. 34.
    Ueda, T., Terayama, K., Kurihara, K., Kobatake, Y. 1975b. Threshold phenomena in chemoreception and taxis in slime moldPhysarum polycephalum.J. Gen. Physiol. 65:223PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1977

Authors and Affiliations

  • Tetsuo Ueda
    • 1
  • Yonosuke Kobatake
    • 1
  1. 1.Faculty of Pharmaceutical SciencesHokkaido UniversitySapporoJapan

Personalised recommendations