The Journal of Membrane Biology

, Volume 54, Issue 3, pp 173–181 | Cite as

Characterization of the lipid and polypeptide components of a tetrodotoxin binding membrane fraction fromElectrophorus electricus

  • Mary-Ann Kallai-Sanfacon
  • Juta K. Reed


This paper reports an analysis of the lipid and polypeptide composition of a tetrodotoxin (TTX)-binding plasma membrane fraction of the eel electroplaque. Phospholipids comprise 73% of the total lipid with cholesterol and neutral glycerides constituting about 21 and 6%, respectively. The major phospholipids are phosphatidylcholine (47.3%), phosphatidylethanolamine (32.6%), phosphatidylserine (13.1%), and sphingomyelin (4.5%). Phosphatidylinositol and phosphatidic acid are minor components. Plasmalogens comprise approximately 19% of the total phosphatidylethanolamine. Each major phospholipid class was analyzed for fatty acyl composition. The results indicate a unique distribution profile for each class with respect to chain length and unsaturation. PE and PS both contain high percentages of polyunsaturated fatty acids particularly docosahexaenoic acid with constitutes 35 and 39% of the total fatty acids, respectively. However, PC and PS contain significantly lower levels of polyunsaturated fatty acids. The lipid profile observed in this preparation is compared to those previously reported for membranes from other excitable tissues. Polyacrylamide gel electrophoresis of the membranes indicates a complex distribution of peptides with several major species and at least 30 minor components. Two of the major species have molecular weights corresponding to those of the two subunits of the (Na++K+)-ATPase.


Glyceride Membrane Fraction Phosphatidylethanolamine Docosahexaenoic Acid Phosphatidic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agnew, W.S., Levinson, S.R., Brabson, J.S., Raftery, M.A. 1978. Purification of the tetrodotoxin-binding component associated with the voltage-sensitive sodium channel fromElectrophorus electricus electroplax membranes.Proc. Nat. Acad. Sci. USA.75:2606Google Scholar
  2. 2.
    Armstrong, C.M. 1975. Ionic pores, gates and gating currents.Q. Rev. Biophys. 7:179Google Scholar
  3. 3.
    Balerna, M., Fosset, M., Chicheportiche, R., Romey, G. 1975. Constitution and properties of axonal membranes of crustacean nerves.Biochemistry 14:5500Google Scholar
  4. 4.
    Bartels, E., Rosenberg, P. 1972. Correlation between electrical activity and splitting of phospholipids by snake venom in the single electroplax.J. Neurochem. 19:1251Google Scholar
  5. 5.
    Benzer, T., Raftery, M.A. 1972. Partial characterization of a tetrodotoxin binding component from nerve membrane.Proc. Nat. Acad. Sci. USA 69:3634Google Scholar
  6. 6.
    Breckenridge, W.C., Gombos, G., Morgan, I.G. 1971. The docosahexaenoic acid of the phospholipids of synaptic membranes vesicles and mitochondria.Brain Res. 33:581Google Scholar
  7. 7.
    Breckenridge, W.C., Gombos, G., Morgan, I.G. 1972. The lipid composition of adult brain synaptosomal plasma membranes.Biochim. Biophys. Acta 266:695Google Scholar
  8. 8.
    Breckenridge, W.C., Vincendon, G. 1971. L'acide docosahexaénoïque de l'organe électrique de la Torpille.C.R. Acad. Sci. 273:1337Google Scholar
  9. 9.
    Chacko, G.K., Barnola, F.V., Villegas, R. 1977. Phospholipid and fatty acid compositions of axon and periaxon cell plasma membranes of lobster leg nerve.J. Neurochem. 28:445Google Scholar
  10. 10.
    Chapman, D. 1975. Phase transitions and fluidity characteristics of lipids and cell membranes.Q. Rev. Biophys. 8:185Google Scholar
  11. 11.
    Cook, A.M., Low, E., Ishijimi, M. 1972. Effect of phosphatidylserine decarboxylase on neural excitation.Nature New Biol. 239:150Google Scholar
  12. 12.
    Ellman, G.L., Courtney, K.D., Andress, V., Featherstone, R.M. 1961. A new rapid colorimetric determination of acetylcholinesterase activity.Biochem. Pharmacol. 7:88Google Scholar
  13. 13.
    Eng, L.F., Nobel, E.P. 1968. The maturation of rat brain myelin.Lipids 3:157Google Scholar
  14. 14.
    Fourcans, B., Jain, M.K. 1974. Role of phospholipids in transport and enzyme reactions.Adv. Lipid Res. 12:147Google Scholar
  15. 15.
    Georgescauld, D., Duclohier, H. 1978. Transient fluorescence signals from pyrene labelled pike nerves during action potential. Possible implications for membrane fluidity changes.Biochem. Biophys. Res. Commun. 85:1186Google Scholar
  16. 16.
    Hille, B. 1970. Ionic channels in nerve membranes.Prog. Biophys. Mol. Biol. 21:1Google Scholar
  17. 17.
    Kishimoto, Y., Agranoff, B.W., Radin, N.S., Burton, R.M. 1969. Comparison of the fatty acids of lipids of subcellular brain fractions.J. Neurochem. 16:397Google Scholar
  18. 18.
    Koeppen, A.H., Barron, K.D., Mitzen, D.J. 1967. Phospholipids, fatty acids and fatty aldehydes in rat brain subcellular fractions.Brain Res. 35:199Google Scholar
  19. 19.
    Kreps, E.M., Krasil'nikova, V.I., Pomazanskaya, L.F., Pravdina, N.I., Smirnov, A.A., Chirkovskaya, E.V. 1973. Phospholipids and their fatty acids in the brain and electric organ of the rayTorpedo marmorata.Zh. Evol. Biokhim. Fiziol. 9:20Google Scholar
  20. 20.
    Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature (London) 227:680Google Scholar
  21. 21.
    Light, R.J., Easton, D.M. 1967. Saponifiable fatty acids of myelinated and unmyelinated nerve fibres of the garfish.J. Neurochem. 4:141Google Scholar
  22. 22.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265Google Scholar
  23. 23.
    Manual of Laboratory Operations. 1974. Lipid Research Clinic Program.Lipid Lipoprotein Anal. 1:25Google Scholar
  24. 24.
    Nielsen, N.C., Fleischer, S., McConnell, D.G. 1970. Lipid composition of bovine retinal outer segment fragments.Biochim. Biophys. Acta 211:10Google Scholar
  25. 25.
    Pennington, R.J. 1961. Biochemistry of dystrophic muscle. Mitochondrial succinate-tetrazolium reductase and adenosine triphosphatase.Biochem. J. 80:649Google Scholar
  26. 26.
    Perrone, J.R., Hackney, J.F., Dixon, J.F., Hokin, L.E. 1975. Molecular properties of purified (sodium and potassium) activated adenosine triphosphatases and their subunits from the rectal gland ofSqualus acanthias and the electric organ ofElectrophorus electricus.J. Biol. Chem. 250:4178Google Scholar
  27. 27.
    Popot, J.L., Demel, R.A., Sobel, A., Deenen, L.L.M. van, Changeux, J.P. 1978. Interaction of the acetylcholine (nicotinic) receptor protein fromTorpedo marmorata electric organ with monolayers of pure lipids.Eur. J. Biochem. 85:27Google Scholar
  28. 28.
    Reed, J.K., Raftery, M.A. 1976. Properties of the tetrodotoxin binding component in plasma membranes isolated fromElectrophorus electricus.Biochemistry 15:944Google Scholar
  29. 29.
    Ritchie, J.M., Rogart, R.B. 1977. The binding of saxitoxin and tetrodotoxin to excitable tissue.Rev. Physiol. Biochem. Pharmacol. 79:1Google Scholar
  30. 30.
    Rosenberg, P., Condrea, E. 1968. Maintenance of axonal conduction and membrane permeability in presence of extensive phospholipid splitting.Biochem. Pharmacol. 17:2033Google Scholar
  31. 31.
    Rosenberg, P., Silman, I., Ben-David, E., DeVries, A., Condrea, E. 1977. Characterization of membranes obtained from electric organ of the electric eel by sucrose gradient fractionation and by microdissection.J. Neurochem. 29:561Google Scholar
  32. 32.
    Rouser, G., Fleischer, S., Yamamoto, A. 1970. Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots.Lipids 5:494Google Scholar
  33. 33.
    Rouser, G., Kritchevsky, G., Yamamoto, A., Baxter, C.F. 1972. Lipids in the nervous system of different species as a function of age: Brain, spinal cord, peripheral nerve, purified whole cell preparation, and subcellular particulates: regulatory mechanisms and membrane structure.Adv. Lipid Res. 10:261Google Scholar
  34. 34.
    Schapira, G., Dobocz, I., Piau, J.P., Delain, E. 1974. An improved technique for preparation of skeletal muscle cell plasma membrane.Biochim. Biophys. Acta 345:348Google Scholar
  35. 35.
    Schmid, H.H.O., Takahashi, T. 1970. Reductive and oxidative biosynthesis of plasmalogens in myelinating brain.J. Lipid Res. 11:412Google Scholar
  36. 36.
    Sklar, L.A., Miljanich, G.P., Dratz, E.A. 1979. A comparison of the effects of calcium on the structure of bovine retinal outer segment membranes, phospholipids, and bovine brain phosphatidylserine.J. Biol. Chem. 254:9592Google Scholar
  37. 37.
    Sottocasa, G.L., Kuylenstierna, B., Ernster, L., Bergstrand, A. 1967. An electron-transport system associated with the outer membrane of liver mitochondria.J. Cell Biol. 32:415Google Scholar
  38. 38.
    Trams, E.G., Hoiberg, C.P. 1970. Lipid composition of tissue fromElectrophorus electricus.Proc. Soc. Exp. Biol. Med. 135:193Google Scholar
  39. 39.
    Villegas, R., Barnola, F.V., Camejo, G. 1973. Action of proteases and phospholipases on tetrodotoxin binding to axolemma preparations isolated from lobster nerve fibres.Biochim. Biophy. Acta 318:61Google Scholar
  40. 40.
    Weber, K., Pringle, J.R., Osborn, M. 1972. Measurement of molecular weights by electrophoresis on SDS-acrylamide gel.In: Enzyme Structure. Part C. C.H.W. Hirs and S.N. Timasheff, editors. Methods in Enzymology, Vol. 26, p. 3. Academic Press, New YorkGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1980

Authors and Affiliations

  • Mary-Ann Kallai-Sanfacon
    • 1
  • Juta K. Reed
    • 1
  1. 1.Department of Chemistry, Erindale CollegeUniversity of TorontoTorontoCanada

Personalised recommendations