Skip to main content

Dependence of water movement on sodium transport in kidney proximal tubule: A microperfusion study substituting lithium for sodium

Summary

The relationship between water and sodium movements through the mammalian proximal convoluted tubule was investigated by substituting lithium for sodium. Proximal convoluted rat Kidney tubules were perfusedin vivo with a Ringer solution containing 107 meq/liter lithium and 42 meq/liter sodium. Several micropunctures were made along the same nephron, and [3H] inulin, [14C] glucose,22Na, osmolality, Na, Mg and Cl were determined on each sample. Measurements of22Na showed that sodium and lithium diffusion rates were practically identical throughout the entire epithelium. A one- for-one exchange of sodium for lithium induced a negative trans-epithelial net flux of Na from plasma to lumen. However, despite this negative flux, a positive net water movement was measured from lumen to plasma. This movement was proportional both to glucose reabsorption and to the rise in the chloride concentration, two mechanisms known to be dependent on the trans-cellular movement of sodium. It was therefore concluded that the net water flux was a function of the unidirectional transcellular net flux of Na.

Rabbit proximal convoluted tubules were perfusedin vitro with a solution containing 75 meq/liter Li and 75 meq/liter Na on both the luminal and peritubular sides. Under these conditions, the water reabsorption rate dropped to half its control value. Water movement was therefore a function of the external sodium concentration, which in turn probably regulates the intracellular Na concentration.

This is a preview of subscription content, access via your institution.

References

  1. Bartoli, E., Earley, L.E. 1973. Importance of ultrafilterable plasma factors in maintaining tubular reabsorption.Kidney Int. 3:142–150

    Google Scholar 

  2. Biber, T.U.L., Mullen, T.L. 1980 Effect of external cation and anion substitutions on sodium transport in isolated frog skin.J. Membrane. Biol. 52:121–132

    Google Scholar 

  3. Burg, M.B., Grantham, J., Abramow, M., Orloff, J. 1966. Preparation and study of fragments of single rabbit nephrons.Am. J. Physiol. 210:1293–1298

    Google Scholar 

  4. Burg, M.B., Green, N. 1976. Role of monovolent ions in the reabsorption of fluid by isolated perfused proximal renal tubules of the rabbit.Kidney Int. 10:221–228

    Google Scholar 

  5. Candia, O.A., Chiarandini, D.J. 1973. Transport of lithium and rectification by frog skin.Biochim. Biophys. Acta 307:578–589

    Google Scholar 

  6. Cardinal, J., Duchesneau, D. 1978. Effect of potassium on proximal tubular function.Am. J. Physiol. 234:F381-F385

    Google Scholar 

  7. Cooke, K.R. 1976. Water and ion contents of rat renal cortical slices leached and reincubated in isosmotic media with lithium replacing sodium.Proc. U. Otago Med. Sch. 54(1):10–12

    Google Scholar 

  8. Corman, B., Carriere, S., Le Grimellec, C., Cardinal, J. 1980. Proximal tubular response to variations in extracellular sodium concentration.Am. J. Physiol. 238:F256-F260

    Google Scholar 

  9. Corman, B., Roinel, N., Rouffignac, C. de 1981. Water reabsorption capacity of the proximal convoluted tubule: A microperfusion study on rat Kidney.J. Physiol. (London) (in press)

  10. Dantzler, W.H., Bentley, S.K. 1978. Fluid absorption with and without sodium in isolated perfused snake proximal tubule.Am. J. Physiol. 234(1):F68-F79

    Google Scholar 

  11. Deetjen, P., Boylan, J.W. 1968. Glucose reabsorption in the rat Kidney.Pfluegers Arch. 299:19–29

    Google Scholar 

  12. Ehrlich, B.E., Diamond, J.M. 1980. Lithium, membranes, and manic-depressive illness.J. Membrane Biol. 52:187–200

    Google Scholar 

  13. Giebisch, G., Klose, R.M., Malnic, G., Sullivan, W.S. Windhaager, E. 1964. Sodium movement across single perfused proximal tubules of rat Kidney.J. Gen. Phys. 47:1175–1194

    Google Scholar 

  14. Grantham, J.J., Lowe, C.M., Dellasega, M., Cole, B.R., 1977. Effect of hypotonic medium on K and Na content of proximal renal tubules.Am. J. Physiol. 232(1):F42-F49

    Google Scholar 

  15. Green, R., Giebisch, G. 1975. Ionic requirements of proximal tubular sodium transport. I. Bicarbonate and chloride.Am. J. Physiol. 229(5):1205–1215

    Google Scholar 

  16. Gutman, Y., Hochman, S., Wald, H. 1973. The differential effect of Li+ on microsomal ATPase in cortex, medulla and papilla of the rat kidney.Biochem. Biophys. Acta 298:284–290

    Google Scholar 

  17. Gyory, A.Z., Lyngard, J.M. 1976. Kinetics of active sodium transport in rat proximal tubules and its variation by cardiac glycosides at zero net volume and ion fluxes. Evidence for a multisite sodium transport system.J. Physiol. (London) 257:257–274

    Google Scholar 

  18. Häberle, D.A., Shiigai, T. 1978. Flow-dependent volume reabsorption in the proximal convolution of the rat kidney. The role of glomerular-born tubular fluid for the maintenance of glumerulo-tubular balance. New aspects of renal function H.G. Vogel, and K.J. Ullrich editors. Vol. 6. pp. 198–208. Excerpta Medica, Amsterdam-Oxford

    Google Scholar 

  19. Hamburger, R.J., Lawson, N.L., Schwartz, J.H. 1976. Response to parathyroid hormone in defined segments of proximal tubule.Am. J. Physiol. 230(2):286–290

    Google Scholar 

  20. Hayslett, J.P., Kashgarian, H. 1979. A micropuncture study of the renal handling of lithium.Pfluegers Arch. 38:159–163

    Google Scholar 

  21. Herrera, F.C., Egea, R., Herrera, A.M. 1971. Movement of lithium across toad urinary bladder.Am. J. Physiol. 220(5):1501–1508

    Google Scholar 

  22. Kinne, R., Murer, H., Kinne-Safran, E., Thees, M., Sachs, G. 1975. Sugar transport by renal plasma membrane vesicles.J. Membrane Biol. 21:375–395

    Google Scholar 

  23. Kinsella, J.L., Aronson, P.S. 1980. Properties of Na+−H+ exchanger in renal microvillus membrane vesicules.Am. J. Physiol. 238(7):F461-F469

    Google Scholar 

  24. Maunsbach, A.B. 1966. Observations on the segmentation of the proximal tubule in the rat kidney.J. Ultras. Res. 16:239–258

    Google Scholar 

  25. Morel, F., Murayama, Y. 1970. Simultaneous measurement of unidirectional and net sodium fluxes in microperfused rat proximal tubules.Pfluegers. Arch. 320:1–23

    Google Scholar 

  26. Morel, F., Roinel, N. 1969. Application de la microsonde électronique à l'analyse élémentaire quantitative d'échantillons liquides d'un volume inférieur à 10−9 1.J. Chim. Phys. 66:1084–1091

    Google Scholar 

  27. Morel, F., Roinel, N., Le Grimellec, C. 1969. Electron probe analysis of tubular fluid composition.Nephron 6:350–364

    Google Scholar 

  28. Ramsay, J.A., Brown, R.H.J. 1955 Simplified apparatus and procedures for freezing-point determinations upon small volumes of fluid.J. Sci. Instrum. 32:372–375

    Google Scholar 

  29. Ramsay, J.A., Brown, R.H.J., Croghan, P.C. 1955. Electrometric titration of chloride in small volumes.J. Exp. Biol. 32:822–829

    Google Scholar 

  30. Seely, J.F. 1973. Effect of peritubular oncotic pressure on rat proximal tubule electrical resistance.Kidney Int. 4:28–35

    Google Scholar 

  31. Sonnenberg, H., Deetjen, P. 1964. Methode zur Durchströmung einzelner Nephronabschnitte.Pfluegers Arch. 278:669–674

    Google Scholar 

  32. Spring, K.R., Giebisch, G. 1977. Kinetics of Na+ transport inNecturus proximal tubule.J. Gen. Physiol. 70:307–328

    Google Scholar 

  33. Steinhausen, M. 1963. Eine Methode für Differenzierung Proximalen und Distalen Tubuli der Nierenrinde von Rattenin vivo und ihre Anwendung zur Bestimmung Tubulären Strömungsgeschwindigkeiten.Pfluegers Arch. 277:23–32

    Google Scholar 

  34. Thellier, M., Hartmann, A., Lassalles, J.P., Garrec, J.P. 1980. A tracer method to study unidirectional fluxes of lithium. Application to frog skin.Biochim. Biophys. Acta 598:339–344

    Google Scholar 

  35. Thomsen, K., Shou, M., Steiness, I., Hansen, H.E., 1969. Lithium as an indicator of proximal sodium reabsorption.Pfluegers Arch. 308:180–184

    Google Scholar 

  36. Villey, D., Anagnostopoulos, T. 1973. Sodium-free fluid reabsorption inNecturus kidney perfused with sodium-free media.Kidney Int. 4:252–258

    Google Scholar 

  37. Windhager, E.E., Whittembury, B., Oken, D.E., Schatzmann, H.S., Solomon, A.K. 1959. Single proximal tubules of theNecturus kidney. III. Dependence of H2O movement on NaCl concentration.Am. J. Physiol. 197(2):313–318

    Google Scholar 

  38. Zerahn, K., 1955. Studies on the active transport of lithium in the isolated frog skin.Acta Physiol. Scand. 33:347–358

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Corman, B., Roinel, N. & de Rouffignac, C. Dependence of water movement on sodium transport in kidney proximal tubule: A microperfusion study substituting lithium for sodium. J. Membrain Biol. 62, 105–111 (1981). https://doi.org/10.1007/BF01870204

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870204

Key words

  • Water fluxes
  • Na fluxes
  • proximal tubule microperfusion
  • Li substitution
  • rat kidney