Skip to main content
Log in

Lipid-polyethylene glycol interactions: II. Formation of defects in bilayers

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Polyethylene glycol, a known cell fusogen, is found to induce the formation of structural defects in egg phosphatidylcholine multilamellar vesicles, as shown by freeze-fracture microscopy.31P NMR spectra of these vesicles reveal the existence of a nonbilayer (isotropic) phase. The observed disruption in the bilayers is believed to be associated with an intermediate stage of membrane fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PEG:

Polyethylene glycol

IMP:

Intramembranous particle

PC:

Phosphatidylcholine

PS:

Phosphatidylserine

SUV:

Small unilamellar vesicles

MLV:

Multilamellar vesicles

DPPC:

Dipalmitoyl phosphatidylcholine

DSC:

Differential scanning calorimetry

DMPC:

Dimyristoylphosphatidylcholine

T c :

Phase transition temperature

References

  • Ahkong, Q.F., Fisher, D., Tampion, W., Lucy, J.A. 1975. Mechanisms of cell fusion.Nature (London) 253:194–195

    Google Scholar 

  • Baran, A.A., Solomentseva, I.M., Mank, V.V., Kurilenko, O.D. 1972. Role of the solvation factor in stabilizing disperse systems containing water-soluble polymers.Dokl. Akad. Nauk SSSR 207:363–366

    Google Scholar 

  • Blow, A.M.J., Botham, G.M., Fisher, D., Goodall, A.H., Tilcock, C.P.S., Lucy, J.A. 1978. Water and calcium ions in cell fusion induced by poly (ethylene glycol).FEBS Lett. 94:305–310

    Google Scholar 

  • Boni, L.T., Stewart, T.P., Alderfer, J.L., Hui, S.W. 1981. Lipidpolyethylene glycol interactions: I. Induction of fusion between liposomes.J. Membrane Biol. 62:65–70

    Google Scholar 

  • Burnell, E., Alphen, L. van, Verkleij, A., Kruijff, B. de 1980. 31-P NMR and freeze fracture electron microscopy studies onEscherichia coli: I. Cytoplasmic membrane and total phospholipids.Biochim. Biophys. Acta 597:492–501

    Google Scholar 

  • Cullis, P.R., Hope, M.J. 1978. Effects of fusogenic agent on membrane structure of erythrocyte ghosts and the mechanism of membrane fusion.Nature (London) 271:672–674

    Google Scholar 

  • Cullis, P.R., Kruijff, B. de 1979. Lipid polymorphism and the functional roles of lipids in biological membranes.Biochim. Biophys Acta 559:399–420

    Google Scholar 

  • Gennes, P.G. de 1974. The Physics of Liquid Crystals. Clarendon Press, Oxford

    Google Scholar 

  • Gerritsen, W.J., Kruijff, B. de, Verkleij, A.J., Gier, J. de, Deenan, L.L.M. van 1980. Ca++ induced isotropic motion and phosphatidylcholine flip-flop in phosphatidylcholine-cardiolipin bilayers.Biochim. Biophys. Acta 598:554–560

    Google Scholar 

  • Hui, S.W., Stewart, T.P., Yeagle, P.L., Albert, A.D. 1981. Bilayer to nonbilayer transitions in mixtures of phosphatidylethanolamine and phosphatidylcholine.Arch. Biochem. Biophys. 207: 227–240

    Google Scholar 

  • Hutton, W.C., Yeagle, P.L., Martin, R.B. 1977. The interaction of lanthanide and calcium salts with phospholipid bilayer vesicles: The validity of the nuclear magnetic resonance method for determination of vesicle bilayer phospholipid surface ratios.Chem. Phys. Lipids 19:255–265

    Google Scholar 

  • Kleman, M., Williams, C.E., Costello, M.J., Gulik-Krzywicki, T. 1977. Defect Structures in lyotropic smectic phases revealed by freeze-fracture electron microscopy.Philos. Mag. 35:33–56

    Google Scholar 

  • Knutton, S. 1979. Studies of membrane fusion. III. Fusion of erythrocytes with polyethylene glycol.J. Cell Sci. 36:61–72

    Google Scholar 

  • Kruijff, B. de, Morris, G.A., Cullis, P.R. 1980. Application of 31-P NMR saturation transfer techniques to investigate phospholipid motion and organization in model and biological membranes.Biochim. Biophys. Acta 598:206–211

    Google Scholar 

  • Kruijff, B. de, Besselaar, A.M.H.P. van den, Cullis, P.R., Bosch, H. van den, Deenen, L.L.M. van 1978. Evidence for isotropic motion of phospholipids in liver microsomal membranes.Biochim. Biophys. Acta 514:1–8

    Google Scholar 

  • Kruijff, B. de, Verkleij, A.J., Echteld, C.J.A. van, Gerritsen, W.J., Mombers, C., Noordam, P.C., Gier, J. de 1979. The occurrence of lipidic particles in lipid bilayers as seen by 31-P NMR and freeze fracture electron microscopy.Biochim. Biophys. Acta 555:200–209

    Google Scholar 

  • Ladbrooke, B.D., Chapman, D. 1969. Thermal analysis of lipids, proteins and biological membranes. A review and summary of recent studies.Chem. Phys. Lipids 3:304–367

    Google Scholar 

  • Lawaczeck, R., Kainosho, M., Chan, S.I. 1976. The formation and annealing of structural defects in lipid bilayer vesicles.Biochim. Biophys. Acta 443:313–330

    Google Scholar 

  • LeNeveu, D.M., Rand, R.P., Parsegian, V.A., Gingell, D. 1977. Measurement and modification of forces between lecithin bilayers.Biophys. J. 18:209–230

    Google Scholar 

  • Lucy, J.A. 1970. The fusion of biological membranes.Nature (London) 227:814–817

    Google Scholar 

  • Marsh, D., Watts, A., Knowles, P.F. 1977. Cooperativity of the phase transitions in single and multibilayer lipid vesicles.Biochim. Biophys. Acta 465:500–514

    Google Scholar 

  • Morris, G.A., Freeman, R. 1978. Selective excitation in fourier transform nuclear magnetic resonance.J. Magnet. Reson. 29:433–462

    Google Scholar 

  • Papahadjopoulos, D., Poste, G., Schaeffler, B.E., Vail, W.J. 1974. Membrane fusion and molecular segregation in phospholipid vesicles.Biochim. Biophys. Acta 352:10–28

    Google Scholar 

  • Prestegard, J.H., Kantor, H.L. 1978. Rupture and transformation of lipid bilayer membranes at thermal phase transitions.Cryobiology 15:219–221

    Google Scholar 

  • Ranck, J.L., Mateu, L., Sadler, D.M., Tardieu, A., Gulik-Krzywicki, T., Luzzati, V. 1974. Order-disorder conformational transitions of the hydrocarbon chains of lipids.J. Mol. Biol. 85:249–277

    Google Scholar 

  • Satir, B., Schooley, C., Satir, P. 1973. Membrane fusion in a model system. Mucocyst secretion inTetrahymena.J. Cell Biol. 56:153–176

    Google Scholar 

  • Shipley, G.G. 1973. Recent X-ray difraction studies of biological membranes and membrane components.In: Biological Membranes. D. Chapman and D.F.H. Wallach, editors. Vol. 2. pp. 1–89. Academic Press, London-New York

    Google Scholar 

  • Stier, A., Finch, S.A.E., Bosterling, B. 1978. Non-lamellar structures in rabbit microsomal membranes.FEBS Lett. 91:109–112

    Google Scholar 

  • Tilcock, C.P.S., Fisher, D. 1979. Interaction of phospholipid membranes with poly(ethylene glycol)s.Biochim. Biophys. Acta 577:53–61

    Google Scholar 

  • Verkleij, A.J., Mombers, C., Gerritsen, W.J., Leunissen-Bijvelt, L., Cullis, P.R. 1979. Fusion of phospholipid vesicles in association with the appearance of lipidic particles as visualized by freeze fracturing.Biochim. Biophys. Acta 555:358–361

    Google Scholar 

  • Wilkins, M.H.F., Blaurock, A.E., Engelman, D.M. 1971. Bilayer structure in membranes.Nature New Biol. 230:72–76

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boni, L.T., Stewart, T.P., Alderfer, J.L. et al. Lipid-polyethylene glycol interactions: II. Formation of defects in bilayers. J. Membrain Biol. 62, 71–77 (1981). https://doi.org/10.1007/BF01870201

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870201

Key words

Navigation