Advertisement

The Journal of Membrane Biology

, Volume 62, Issue 1–2, pp 7–17 | Cite as

Chloride distribution in the proximal convoluted tubule ofNecturus kidney

  • A. Edelman
  • M. Bouthier
  • T. Anagnostopoulos
Articles

Summary

To assess the mechanism(s) by which intraluminal chloride concentration is raised above equilibrium values, intracellular Cl activity (α i Cl ) was studied in the proximal tubule ofNecturus kidney. Paired measurements of cell membrane PD (VBL) and Cl-selective electrode PD (V BL Cl ) were performed in single tubules, during reversible shifts of peritubular or luminal fluid composition. Steadystate α i Cl was estimated at 14.6±0.6 mmol/liter, a figure substantially higher than that predicted for passive distribution. To determine the site of the uphill Cl transport into the cell, an inhibitor of anion transport (SITS) was added to the perfusion fluid. Introduction of SITS in peritubular perfusate decreased α i Cl , whereas addition of the drug in luminal fluid slightly increased α i Cl ; both results are consistent with basolateral membrane uphill Cl transport from interstitium to the cell. TMA+ for Na+ substitutions in either luminal or peritubular perfusate had no effect on α i Cl . Removal of bicarbonate from peritubular fluid, at constant pH (a situation increasing HCO 3 outflux), resulted in an increase of α i Cl , presumably related to enhanced Cl cell influx: we infer that Cl is exchanged against HCO 3 at the basolateral membrane. The following mechanism is suggested to account for the rise in luminal Cl concentration above equilibrium values: intracellular CO2 hydration gives rise to cell HCO 3 concentrations above equilibrium. The passive exit of HCO 3 at the basolateral membrane energizes an uphill entry of Cl into the cell. The resulting increase of α i Cl , above equilibrium, generates downhill Cl diffusion from cell to lumen. As a result, luminal Cl concentration also increases.

Key words

Renal transport proximal tubule selective microelectrodes chloride intracellular activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anagnostopoulos, T. 1975. Anion permeation in the proximal tubule ofNecturus kidney: The shunt pathway.J. Membrane Biol. 24:356–380Google Scholar
  2. Anagnostopoulos, T. 1977. Electrophysiological study of the antiluminal membrane in the proximal tubule ofNecturus: Effect of inorganic anions and SCN.J. Physiol. (London) 267:89–111Google Scholar
  3. Anagnostopoulos, T. 1980. Mecanismes de transport ionique transépithélial dans le néphron: Critères usuels et leurs limites.In: La Fonction Rénale J.P. Bonvalet, editor. Vol. 1, pp. 77–102. E.M. Flammarion, ParisGoogle Scholar
  4. Anagnostopoulos, T., Planelles, G. 1979. Organic anion permeation at the proximal tubule ofNecturus: An electrophysiological study of the peritubular membrane.Pfluegers Arch. 381:231–239Google Scholar
  5. Barratt, L.J., Rector, F.C., Jr., Kokko, J.P., Seldin, D.W. 1874. Factors governing the transepithelial potential difference across the proximal tubule of the rat kidney.J. Clin Invest. 53:454–464Google Scholar
  6. Boron, W.F., Boulpaep, E.L. 1980. Intracellular pH in isolated perfused proximal tubules of amphibian kidney.Fed. Proc. (Abstr.) 39:713Google Scholar
  7. Bott, P.A. 1962. Micropuncture study of renal excretion of water, K, Na and Cl inNecturus.Am. J. Physiol. 203:662–666Google Scholar
  8. Boulpaep, E.L. 1972. Permeability changes of the proximal tubule ofNecturus during saline loading.Am. J. Physiol. 222:517–531Google Scholar
  9. Cabantchik, Z.I., Rothstein, A. 1974. Membrane proteins related to anion permeability of human red blood cells. I. Localization of disulfonic stilbene binding sites in proteins involved in permeation.J. Membrane Biol. 15:207–226Google Scholar
  10. Deisz, R.A., Lux, H.D. 1978. Intracellular chloride concentration and postsynaptic inhibition in crayfish strech receptor neurons.In: Arzneimittel-Forshung/Drug Research. D.W. Lübbers, G. Eisenman, M. Kessler, and W. Simon, editors. Vol. 28, pp. 18–19. Editio Cantor. Aulendorf (W. Germany)Google Scholar
  11. Duffey, M.E., Thompson, S.M., Frizzell, R.A., Schultz, S.G. 1979. Intracellular chloride activities and active chloride absorption in the intestinal epithelium of the winter flounder.J. Membrane Biol. 50:331–341Google Scholar
  12. Duffey, M.E., Turnheim, K., Frizzell, R.A., Schultz, S.G. 1978. Intracellular chloride activities in rabbit gallbladder: Direct evidence for the role of the sodium-gradient in energizing “uphill” chloride transport.J. Membrane Biol. 42:229–245Google Scholar
  13. Edelman, A., Anagnostopoulos, T. 1976. Transepithelial potential difference in the proximal tubule ofNecturus kidney.Pfluegers Arch. 363:105–111Google Scholar
  14. Edelman, A., Boutheir, M., Anagnostopoulos, T. 1979. Proximal tubule cell chloride activity during changes of peritubular or luminal fluid composition. 12th Annu. Meet. Am. Soc. Nephrol. (Boston) (Abstr.) p. 42AGoogle Scholar
  15. Edelman, A., Curci, S., Samarzija, I., Frömter, E. 1978a. Determination of intracellular K+ activity in rat kidney proximal tubular cells.Pfluegers Arch. 378:37–45Google Scholar
  16. Edelman, A., Teulon, J., Anagnostopoulos, T. 1978b. The effect of a disulfonic acid stilbene on proximal cell membrane potential inNecturus kidney.Biochim. Biophys. Acta 514:137–144Google Scholar
  17. Frömter, E. 1977. Magnitude and significance of the paracellular shunt path in rat kidney proximal tubule.In: Intestinal Permeation. M. Kramer and F. Lauterbach, editors.Excerpta Med. Congr. Ser. 391:393–405Google Scholar
  18. Frömter, E., Gessner, K. 1974a. Free-flow potential profile along rat kidney proximal tubule.Pfluegers Arch. 351:69–83Google Scholar
  19. Frömter, E., Gessner, K. 1974b. Active transport potentials, membrane diffusion potentials and streaming potentials across rat kidney proximal tubule.Pfluegers Arch. 351:85–98Google Scholar
  20. Frömter, E., Rumrich, G., Ullrich, K.J. 1973. Phenomenologic description of Na+, Cl and HCO3 absorption from proximal tubules of the rat kidney.Pfluegers Arch. 343:189–220Google Scholar
  21. Garland, H.O., Hopkins, T.C., Henderson, I.W., Haworth, C.W., Chester-Jones, I. 1973. The application of electrode probe microanalysis to renal micropuncture studies in amphibians.Micron 4:161–176Google Scholar
  22. Giebisch, G. 1956. Measurements of pH, chloride and inulin concentrations in proximal tubule fluid ofNecturus.Am. J. Physiol. 185:171–174Google Scholar
  23. Green, R., Bishop, J.H.V., Giebisch, G. 1979. Ionic requirements of proximal tubular transport. III. Selective luminal anion substitution.Am. J. Physiol. 236:F268-F277Google Scholar
  24. Green, R., Giebisch, G. 1975a. Ionic requirements of proximal tubular sodium transport. I. Bicarbonate and chloride.Am. J. Physiol. 229:1205–1215Google Scholar
  25. Green, R., Giebisch, G. 1975b. Ionic requirements of proximal tubular sodium transport. II. Hydrogen ion.Am. J. Physiol. 229:1216–1226Google Scholar
  26. Hong, S.K., Goldinger, J.M., Song, Y.K., Koschier, F.J., Lee, S.H. 1978. Effect of SITS on organic anion transport in the rabbit kidney cortical slice.Am. J. Physiol. 234:F302-F307Google Scholar
  27. Husted, R.F., Cohen, L.H., Steinmetz, P.R. 1979. Pathways for bicarbonate transfer across the serosal membrane of turtle urinary bladder: Studies with a disulfonic stilbene.J. Membrane Biol. 47:27–37Google Scholar
  28. Khuri, R.N., Agulian, S.K., Bogharian, K., Aklanjian, D. 1975. Electrochemical potentials of chloride in proximal renal tubule ofNecturus maculosus.Comp. Biochem. Physiol. 50A:695–700Google Scholar
  29. Khuri, R.N., Agulian, S.K., Bogharian, K., Nassar, R., Wise, W. 1974. Intracellular bicarbonate in single cells ofNecturus kidney proximal tubule.Pfluegers Arch. 349:295–299Google Scholar
  30. Le Grimellec, C. 1975. Micropuncture study along the proximal convoluted tubule. Electrolyte reabsorption in first convolutions.Pfluegers Arch. 354:133–150Google Scholar
  31. Leslie, B.R., Schwartz, J.H., Steinmetz, P.R. 1973. Coupling between Cl absorption and HCO3 secretion in turtle urinary bladder.Am. J. Physiol. 225:610–617.Google Scholar
  32. Lev, A.A., Armstrong, W. McD. 1975 Ionic activities in cells.In: Current Topics in Membranes and Transport. F. Bronner and A. Kleinzeller, editors. Vol. 6, pp. 59–123. Academic Press, New YorkGoogle Scholar
  33. Neuman, K.H., Rector, F.C., Jr. 1976. Mechanisms of NaCl and water reabsorption in the proximal convoluted tubule of rat kidney.J. Clin. Invest. 58:1110–1118Google Scholar
  34. Nicolsky, B.P. 1937. Theory of the glass electrode.I Acta Physiochim. (USSR) 7:597 (quoted by Lev and Armstrong, 1975)Google Scholar
  35. Pitts, R.R. 1968. Physiology of the Kidney and Body Fluids, Year Book Medical, ChicagoGoogle Scholar
  36. Rector, F.C., Jr. 1976. Renal acidification and ammonia production; chemistry of weaks acids and bases; buffer mechanisms.In: The Kidney. B.M. Brenner and F.C. Rector, editor. pp. 318–343. W.B. Saunders, PhiladelphiaGoogle Scholar
  37. Reuss, L., Weinman, S.A. 1979. Intracellular ionic activities and transmembrane electrochemical potential differences in gallbladder epithelium.J. Membrane Biol. 49:345–362Google Scholar
  38. Russell, J.M. 1978. Effects of ammonium and bicarbonate-CO2 on intracellular chloride levels inAplysia neurons.Biophys. J. 22:131–137Google Scholar
  39. Russell, J.M., Boron, W.F. 1976. Role of chloride transport in regulation of intracellular pH.Nature (London) 264:73–74Google Scholar
  40. Sohtell, M. 1979. CO2 along the proximal tubules in the rat kidney.Acta Physiol. Scand. 105:146–155Google Scholar
  41. Spring, K.R., Kimura, G. 1978. Chloride reabsorption by renal proximal tubules ofNecturus.J. Membrane Biol. 38:233–254Google Scholar
  42. Spring, K.R., Paganelli, C.V. 1972. Sodium flux inNecturus proximal tubule under voltage clamp.J. Gen. Physiol. 60:181–201Google Scholar
  43. Thomas, R.C. 1977. The role of bicarbonate, chloride and sodium ions in the regulation of intracellular pH in small neurons.J. Physiol. (London) 273:317–338Google Scholar
  44. Thomas, R.C. 1978. Ion-Sensitive Intracellular Microelectrodes. How To Make and Use Them. Academic Press, LondonGoogle Scholar
  45. Ullrich, K.J., Capasso, G., Rumrich, G., Papavassiliou, F., Klöss, S. 1977. Coupling between proximal tubular transport processes: Studies with ouabain, SITS and HCO3-free solutions.Pfluegers Arch. 368:245–252Google Scholar
  46. Walker, A.M., Hudson, C.L., Findley, T., Jr., Richards, A.N. 1937. The total concentration and the chloride concentration of fluid from different segments of the renal tubule of amphibia.Am. J. Physiol. 118:121–129Google Scholar
  47. Weiner, M.W. 1980. The effects of bicarbonate and hydroxyl ions on chloride transport by toad bladders.Biochim. Biophys. Acta 596:292–301Google Scholar
  48. Wilbrandt, W. 1938. Electrical potential differences across the wall of kidney tubules ofNecturus.J. Cell Comp. Physiol. 11:425–431Google Scholar

Copyright information

© Springer-Verlag New York Inc 1981

Authors and Affiliations

  • A. Edelman
    • 1
  • M. Bouthier
    • 1
  • T. Anagnostopoulos
    • 1
  1. 1.Institut National de la Santé et de la Recherche Médicale-Unité 192Hôpital Necker-Enfants MaladesParisFrance

Personalised recommendations