Skip to main content
Log in

The effect of deuterium ion concentration on the properties of sarcoplasmic reticulum

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

99.8% Deuterium oxide, as obtained commerically, has been shown to contain a contaminant which strongly inhibits calcium transport and binding by sarcoplasmic reticulum (S.R.) and the associated ATPase activity. The contaminant is removed by distillation of deuterium oxide. Calcium binding by S.R. is maximal at pH 6.5 whereas calcium transport (in the presence of oxalate) is maximal at a pH of 7.2 to 7.5. In the presence of deuterium oxide, these maxima are shifted to a pD of 7.2 and a pD of 7.5 to 8.0, respectively. The maximum binding and transport rates are not affected by the change from aqueous to deuterium oxide medium. The same phenomena are observed with the ATPase activity. In the presence of oxalate, calcium;magnesium ATPase is maximal at pH 7.2 and pD 8.0. The maximum rate is unchanged, however,

At pH 7.2 or higher, the amount of calcium which may be bound by S.R. remains constant with time. At lower pH, calcium initially bound is slowly displaced from the membrane with time. It has been reported that deuterium oxide inhibits excitation-contraction coupling. The results presented here indicate that S.R. is probably not the site of deuterium oxide inhibition, and raise the possibility that the measured inhibition is due to an impurity in the deuterium oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnes, T. C., Cunliffe, T., Warren, J. 1935. The heart rate in heavy water.Science 81:346

    Google Scholar 

  2. Besch, H. R., Jr., Schwartz, A. 1971. Initial calcium binding rates of canine cardiac relaxing system (sarcoplasmic reticulum fragments) determined by stopped-flow spectrophotometry.Biochem. Biophys. Res. Cummun. 45:286

    Google Scholar 

  3. Brandt, W. 1935. The effect of deuterium oxide on the action of the isolated surviving frog heart.Klin. Wschr. 14:1597

    Google Scholar 

  4. Carter, N. W., Rector, F. C., Campion, D. S., Seldin, D. W. 1967. Measurement of intracellular pH of skeletal muscle with pH-sensitive glass microelectrodes.J. Clin. Invest. 46:920

    PubMed  Google Scholar 

  5. Ebashi, S., Endo, M. 1968. Calcium ion and muscle contraction.Prog. Biophys. Mol. Biol. 18:123

    PubMed  Google Scholar 

  6. Glasoe, P. D., Long, F. A. 1960. Use of glass electrodes to measure acidities in deuterium oxide.J. Phys. Chem. 64:188

    Google Scholar 

  7. Gornall, A. G., Bardawill, C. J., David, M. M. 1949. Determination of serum proteins by means of the biuret reaction.J. Biol. Chem. 177:751

    Google Scholar 

  8. Hotta, K., Morales, M. F. 1960. Myosin B nucleoside triphosphatase in deuterium oxide.J. Biol. Chem. 235:61

    Google Scholar 

  9. Huxtable, R., Bressler, R. 1973. Determination of orthophosphate.Analyt. Biochem. 54:604

    PubMed  Google Scholar 

  10. Huxtable, R., Bressler, R. 1973. Effect of taurine on a muscle intracellular membrane.Biochim. Biophys. Acta 323:573

    PubMed  Google Scholar 

  11. Kaminer, B., Kimura, J. 1972. Deuterium oxide: Inhibition of calcium release in muscle.Science 176:406

    PubMed  Google Scholar 

  12. Katz, A. M., Repke, D. I., Upshaw, J. E., Polascik, M. A. 1970. Characterization of dog cardiac microsomes. Use of zonal centrifugation to fractionate fragmented sarcoplasmic reticulum, (Na++K+)-activated ATPase and mitochondrial fragments.Biochim. Biophys. Acta 205:473

    PubMed  Google Scholar 

  13. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265

    PubMed  Google Scholar 

  14. Martonosi, A., Feretos, R. 1964. Sarcoplasmic reticulum. 1. The uptake of Ca2+ by sarcoplasmic reticulum fragments.J. Biol. Chem. 239:648

    PubMed  Google Scholar 

  15. Nakamaru, Y., Schwartz, A. 1970. Possible control of intracellular calcium metabolism by [H+]: Sarcoplasmic reticulum of skeletal and cardiac muscle.Biochem. Biophys. Res. Commun. 41:830

    PubMed  Google Scholar 

  16. Nakamaru, Y., Schwartz, A. 1972. The influence of hydrogen ion concentration on calcium binding and release by skeletal muscle sarcoplasmic reticulum.J. Gen. Physiol. 59:22

    PubMed  Google Scholar 

  17. Quinn, P. J., Dawson, R. M. C. 1972. The pH dependence of calcium absorption onto anionic phospholipid monolayers.Chem. Phys. Lipids 8:1

    PubMed  Google Scholar 

  18. Schwartz, A. 1971. Calcium and the sarcoplasmic reticulum.In: Calcium and the Heart. P. Harris and L. H. Opie, editors. p. 66. Academic Press Inc., London and New York

    Google Scholar 

  19. Sreter, F. A. 1969. Temperature, pH and seasonal dependence of Ca-uptake and ATPase activity of white and red muscle microsomes.Arch. Biochem. Biophys. 134:25

    PubMed  Google Scholar 

  20. Verzar, F., Haffter, C. 1935. The effect of heavy water (deuterium oxide) on isolated organs.Pflug. Arch. Ges. Physiol. 236:714

    Google Scholar 

  21. Weber, A., Herz, R., Reiss, I. 1964. Role of calcium in contraction and relaxation of muscle.Fed. Proc. 23:896

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huxtable, R., Bressler, R. The effect of deuterium ion concentration on the properties of sarcoplasmic reticulum. J. Membrain Biol. 17, 189–197 (1974). https://doi.org/10.1007/BF01870179

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870179

Keywords

Navigation