Skip to main content
Log in

Studies on isolated subcellular components of cat pancreas

III. Alanine-sodium cotransport in isolated plasma membrane vesicles

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Transport of alanine was studied in isolated plasma membrane vesicles from cat pancreas using a rapid filtration technique. The uptake is osmotically sensitive and the kinetics ofl-alanine transport are biphasic showing a saturable and a nonsaturable component. The saturable component is seen only when a sodium gradient directed from the medium to the vesicular space is present. Under this condition an overshooting uptake ofl-but not ofd-alanine occurs. The Na+ gradient stimulated uptake ofl-alanine is inhibited byl-serine andl-leucine and stimulated when the membrane vesicles had been preloaded withl-alanine,l-serine orl-leucine.

The ionophore monensin inhibits stimulation of uptake caused by a sodium gradient. In the presence of valinomycin or carbonyl cyanidep-trifluoromethoxyphenylhydrazone (CFCCP), the sodium-dependent transport is augmented in vesicles preloaded with K2SO4 or H+ ions (intravesicular pH 5.5), respectively. In the presence of different anions, the Na+-dependent transport is stimulated according to increasing anionic penetration through membranes (lipid solubility). We conclude that a sodium dependent electrogenic amino acid transport system is present in pancreatic plasma membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bégin, N., Scholefield, P.G. 1964. The uptake of amino acids by mouse pancreas in vitro. I. General characteristics.Biochim. Biophys. Acta 90:82

    PubMed  Google Scholar 

  2. Bégin, N., Scholefield, P.G. 1965a. The uptake of amino acids by mouse pancreas in vitro. III. The kinetic characteristics of the transport ofl-proline.Biochim. Biophys. Acta 104:566

    PubMed  Google Scholar 

  3. Bégin, N., Scholefield, P.G. 1965b. The uptake of amino acids by mouse pancreas in vitro. II. The specificity of the carrier systems.J. Biol. Chem. 240:332

    PubMed  Google Scholar 

  4. Berlinguet, L., Bégin, N., Babineau, L.M. 1962. Autoradiographic studies of the distribution of 1-aminocyclopentane carboxylic acid in normal and cancerous mice.Can. J. Biochem. Physiol. 40:1111

    PubMed  Google Scholar 

  5. Cheneval, J.P., Johnstone, R.M. 1974. Transport of amino acids in rat pancreas during development.Biochim. Biophys. Acta 345:17

    PubMed  Google Scholar 

  6. Cheneval, J.P., Johnstone, R.M. 1976. Changes in amino acid transport in rat pancreas in response to fasting and feeding.Biochim. Biophys. Acta 433:630

    PubMed  Google Scholar 

  7. Christensen, H.N. 1973. On the development of amino acid transport systems.Fed. Proc. 32:19

    PubMed  Google Scholar 

  8. Christensen, H.N., De Cespedes, C., Handlogten, M.E., Ronquist, G. 1973. Energization of amino acid transport studied for the Ehrlich ascites tumor cell.Biochim. Biophys. Acta 300:487

    PubMed  Google Scholar 

  9. Eadie, G.S. 1942. The inhibition of cholinesterase by physostigmine and prostigmine.J. Biol. Chem. 146:85

    Google Scholar 

  10. Evers, J., Murer, H., Kinne, R. 1976. Phenylalanine uptake in isolated renal brush border vesicles.Biochim. Biophys. Acta 426:598

    PubMed  Google Scholar 

  11. Hamilton, R.T., Nilsen-Hamilton, M. 1976. Sodium-stimulated α-aminoisobutyric acid transport by membrane vesicles from simian virus-transformed mouse cells.Proc. Nat. Acad. Sci. USA 73:1907

    PubMed  Google Scholar 

  12. Heinz, E., Geck, P., Pietrzyk, C. 1975. Driving forces of amino acid transport in animal cells.Ann. N.Y. Acad. Sci. 264:428

    PubMed  Google Scholar 

  13. Henderson, P.J.F., McGivan, J.D., Chappell, J.B. 1969. The action of certain antibiotics on mitochondrial erythrocyte and artificial phospholipid membranes. The role of induced proton permeability.Biochem. J. 111:521

    PubMed  Google Scholar 

  14. Hillman, R.E., Rosenberg, L.E. 1969. Amino acid transport by isolated mammalian renal tubules.J. Biol. Chem. 244:4494

    PubMed  Google Scholar 

  15. Hofstee, B.H.J. 1952. On the evaluation of the constantsVm andKm in enzyme reactions.Science 116:329

    PubMed  Google Scholar 

  16. Hokin, L.E. 1951. Amino-acid requirements of amylase synthesis by pigeon pancreas slices.Biochem. J. 50:216

    PubMed  Google Scholar 

  17. Hopfer, U., Nelson, K., Perotto, J., Isselbacher, K.J. 1973. Glucose transport in isolated brush border membrane from rat small intestine.J. Biol. Chem. 248:25

    PubMed  Google Scholar 

  18. Lever, J.E. 1976. Regulation of active α-aminoisobutyric acid transport expressed in membrane vesicles from mouse fibroblasts.Proc. Nat. Acad. Sci. USA 73:2614

    PubMed  Google Scholar 

  19. Lin, K.T., Johnstone, R.M. 1971. Active transport of glycine by mouse pancreas. Evidence against the Na+ gradient hypothesis.Biochim. Biophys. Acta 249:144

    PubMed  Google Scholar 

  20. Milutinović, S., Sachs, G., Haase, W., Schulz, I. 1977. Studies on isolated subcellular components of cat pancreas. I. Isolation and enzymatic characterization.J. Membrane Biol. 36:253

    Google Scholar 

  21. Nishiyama, A., Petersen, O.H. 1975. Pancreatic acinar cells: Ionic dependence of acetylcholine-induced membrane potential and resistance change.J. Physiol. (London) 244:431

    Google Scholar 

  22. Potashner, S.J., Johnstone, R.M. 1971. Cation gradients, ATP and amino acid accumulation in Ehrlich ascites cells.Biochim. Biophys. Acta 233:91

    PubMed  Google Scholar 

  23. Quinlan, D.C., Parnes, J.R., Shalom, R., Garvey, T.Q., III, Isselbacher, K.J., Hochstadt, J. 1976. Sodium stimulated amino acid uptake into isolated membrane vesicles from Balb/c 3T3 cells transformed by simian virus 40.Proc. Nat. Acad. Aci. USA 73:1631

    Google Scholar 

  24. Sigrist-Nelson, K., Murer, H., Hopfer, U. 1975. Active alanine transport in isolated brush border membranes.J. Biol. Chem. 250:5674

    PubMed  Google Scholar 

  25. Terry, P.M., Vidaver, G.A. 1973. The effect of gramicidin on sodium-dependent accumulation of glycine by pigeon red cells: A test of the cation gradient hypothesis.Biochim. Biophys. Acta 323:441

    PubMed  Google Scholar 

  26. Thomas, E.L., Christensen, H.N. 1971. Nature of the cosubstrate action of Na+ and neutral amino acids in a transport system.J. Biol. Chem. 246:1682

    PubMed  Google Scholar 

  27. Ullrich, K.J., Frömter, E., Samarzija, I., Evers, J., Kinne, R. 1976. Sodium dependence of amino acid transport in the proximal convolution of the rat kidney.In: Amino Acid Transport and Uric Acid Transport. Symposium Innsbruck, June 1975. S. Silbernagl, f. Lang and R. Greger, editors. p. 70. Georg Thieme, Stuttgart

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyrakowski, T., Milutinović, S., Schulz, I. et al. Studies on isolated subcellular components of cat pancreas. J. Membrain Biol. 38, 333–346 (1978). https://doi.org/10.1007/BF01870150

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870150

Keywords

Navigation