The Journal of Membrane Biology

, Volume 18, Issue 1, pp 81–94 | Cite as

The effect of insulin on the permeability of phosphatidyl choline bimolecular membranes to glucose

  • Marian S. Kafka


Insulin, on the outside of phosphatidyl choline bimolecular membranes, inceeased the permeability of the membranes to glucose. The magnitude of the increase in glucose permeability was dependent upon the insulin concentration and was independent of the glucose concentration over the range 2.7 to 14.4mm. The increase in the permeability of the membranes to glucose was not accompanied by a change in the direct current electrical resistance of the membranes. Ovalbumin resulted in a smaller increase in the permeability of the membranes to glucose and no change in their electrical resistance, while phloretin changed neither the permeability to glucose nor the electrical resistance. Insulin, on both sides of the bimolecular membranes, did not change the permeability to glucose from that observed when insulin was present only on the outside, nor did it change the electrical resistance.


Glucose Choline Human Physiology Glucose Concentration Phosphatidyl Choline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barfort, P., Arquilla, E.R., Vogelhut, P.O. 1968. Resistance changes in lipid bilayers: Immunological applications.Science 1960:1119Google Scholar
  2. Crofford, O.B. 1967. Countertransport of 3-O-methyl glucose in incubated rat epididymal adipose tissue.Amer. J. Physiol. 212:217PubMedGoogle Scholar
  3. Cuatrecasas, P. 1969. Interaction of insulin with the cell membrane: The primary action of insulin.Proc. Nat. Acad. Sci. 63:450PubMedGoogle Scholar
  4. Cuatrecasas, P. 1972. Isolation of the insulin receptor of liver and fat-cell membranes.Proc. Nat. Acad. Sci. 69:318PubMedGoogle Scholar
  5. Davson, H., Danielli, J.F. 1943. The Permeability of Natural Membranes. Cambridge University Press, LondonGoogle Scholar
  6. Gavin, J.R., III, Roth, J., Jen, P., Freychet, P. 1972. Insulin receptors in human circulating cells and fibroblasts.Proc. Nat. Acad. Sci. 69:747Google Scholar
  7. Hanai, T., Haydon, D.A., Taylor, J. 1965. Polar group orientation and the electrical properties of lecithin bimolecular leaflets.J. Theoret. Biol. 9:278Google Scholar
  8. Henn, F.A., Thompson, T.E. 1969. Synthetic lipid bilayer membranes.Annu. Rev. Biochem. 38:241PubMedGoogle Scholar
  9. Hernandez, A., Sols, A. 1963. Transport and phosphorylation of sugars in adipose tissue.Biochem. J. 86:166Google Scholar
  10. Hoos, R.T., Tarpley, H.L., Regen, D.M. 1971. Sugar transport in beef erythrocytes.Biochim. Biophys. Acta 266:174Google Scholar
  11. Jung, C.Y. 1971. Permeability of bimolecular membranes made from lipid extracts of human red cell ghosts to sugars.J. Membrane Biol. 5:200Google Scholar
  12. Kafka, M.S., Pak, C.Y.C. 1969a. Effects of polypeptide and protein hormones on lipid monolayers. I. Effect of insulin and parathyroid hormone on monomolecular films of monooctadecyl phosphate and stearic acid.J. Gen. Physiol. 54:134PubMedGoogle Scholar
  13. Kafka, M.S., Pak, C.Y.C. 1969b. The effect of polypeptide hormones on lipid monolayers. II. The effect of insulin analogues, vasopressin, oxytocin, thyrocalcitonin, adrenocorticotropin, and 3′,5′-cyclic AMP on the uptake of Ca2+ by monomolecular films of monooctadecyl phosphate.Biochim. Biophys. Acta 193:117PubMedGoogle Scholar
  14. Kafka, M.S., Pak, C.Y.C. 1972a. The effect of polypeptide hormones on lipid monolayers. III. The effect of insulin, vasopressin, oxytocin, albumin, and prostaglandinE 1 on the specific resistance to the evaporation of water through monomolecular films of monooctadecyl phosphate, stearic acid, and stearyl alcohol.J. Colloid Interface Sci. 41:148Google Scholar
  15. Kafka, M.S., Pak, C.Y.C. 1972b. Peptide hormones at cell membranes: Studies in a model system.J. Colloid Interface Sci. 41:388Google Scholar
  16. Kono, T., Barham, F.W. 1971a. Insulin-like effects of trypsin on fat cells.J. Biol. Chem. 246:6204Google Scholar
  17. Kono, T., Barham, F.W. 1971b. The relationship between the insulin-binding capacity of fat cells and the cellular response to insulin.J. Biol. Chem. 246:6210PubMedGoogle Scholar
  18. La Mer, V.K., Healy, T.W., Aylmore, L.A.G. 1964. The transport of water through monolayers of long-chainn-paraffinic alchols.J. Colloid Sci. 19:643Google Scholar
  19. LeFevre, P.G., Jung, C.Y., Chaney, J.E. 1968. Glucose transfer by red cell membrane phospholipids in H2O/CHCl3/H2O three-layer systems.Arch. Biochem. Biophys. 126:677PubMedGoogle Scholar
  20. Levine, R. 1965. Cell membrane as a primary site of insulin actions.Fed. Proc. 24:1071PubMedGoogle Scholar
  21. Lieb, W.R., Stein, W.D. 1971. New theory for glucose transport across membranes.Nature, New Biol. 230:108Google Scholar
  22. Lossen, O. 1972. A sequential dialysis method for measuring permeability coefficients of phospholipid vesicles.Biochim. Biophys. Acta 282:31PubMedGoogle Scholar
  23. Morgan, H.E., Regen, D.M., Park, C.R. 1964. Identification of a mobile carrier-mediated sugar transport system in muscle.J. Biol. Chem. 239:368Google Scholar
  24. Mueller, P., Rudin, D.O. 1969a. Translocators in bimolecular lipid membranes: Their role in dissipative and conservative bioenergy transductions.In: Current Topics in Bioenergetics. D.R. Sanadi, editor. Vol. 3, p. 157. Academic Press, New YorkGoogle Scholar
  25. Mueller, P., Rudin, D.O. 1969b. Bimolecular lipid membranes: Techniques of formation, study of electrical properties, and induction of ionic gating phenomenaIn: Laboratory Techniques in Membrane Biophysics. H. Passow and R. Stampfli, editors. pp. 141–143. Springer-Verlag, BerlinGoogle Scholar
  26. Okhi, S. 1970. Effect of local anesthetics on phospholipid bilayers.Biochim. Biophys. Acta 219:18PubMedGoogle Scholar
  27. Papahadjopoulos, D., Nir, S., Okhi, S. 1972. Permeability properties of phospholipid membranes: Effect of cholesterol and temperatureBiochim. Biophys. Acta 266:561PubMedGoogle Scholar
  28. Perry, M.C., Tampion, W., Lucy, J.A. 1970. Interaction of insulin with phospholipid in a membrane model.Biochem. J. 119:50PGoogle Scholar
  29. Regen, D.M., Morgan, H.E. 1964. Studies of the glucose-transport system in the rabbit erythrocyte.Biochim. Biophys. Acta 79:151PubMedGoogle Scholar
  30. Rodbell, M. 1964. Metabolism of isolated fat cells. I. Effects of hormones on glucose metabolism and lipolysis.J. Biol. Chem. 239:375PubMedGoogle Scholar
  31. Rodbell, M. 1966. Metabolism of isolated fat cells. II. The similar effects of phospholipase C and of insulin on glucose and amino acid metabolism.J. Biol. Chem. 241:130PubMedGoogle Scholar
  32. Stein, W.D. 1967. Facilitated diffusion—The kinetic analysis.In: The Movement of Molecules Across Cell Membranes. p. 134. Academic Press, New YorkGoogle Scholar
  33. Sweet, C., Zull, J.E. 1969. Activation of glucose diffusion from egg lecithin liquid crystals by serum albumin.Biochim. Biophys. Acta 1973:94Google Scholar
  34. Trevelyan, W.E., Procter, D.P., Harrison, J.S. 1950. Detection of sugars on paper chromatograms.Nature 166:444Google Scholar
  35. Tsofina, L.M., Liberman, E.A., Babakov, A.V. 1966. Production of bimolecular protein-lipid membranes in aqueous solution.Nature 212:681Google Scholar
  36. Wood, R.E., Wirth, E.P., Jr., Morgan, H.E. 1968. Glucose permeability of lipid bilayer membranes.Biochim. Biophys. Acta 1963:141Google Scholar
  37. Zipper, H., Mawe, R.C. 1972. The exchange and maximal net flux of glucose across the human erythrocyte. I. The effect of insulin, insulin derivatives and small proteins.Biochim. Biophys. Acta 282:311PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1974

Authors and Affiliations

  • Marian S. Kafka
    • 1
  1. 1.Adult Psychiatry Branch, National Institute of Mental HealthNational Institutes of HealthBethesda

Personalised recommendations