The Journal of Membrane Biology

, Volume 12, Issue 1, pp 287–299 | Cite as

Mitochondrial permeability for alcohols, aldoses, and amino acids

  • Park S. Nobel
Article

Summary

Mitochondria isolated from potato tubers were placed in solutions containing various alcohols, aldoses, or neutral amino acids. Based on the osmotic responses in the different media, the reflection coefficients and hence the relative permeabilities of the nonelectrolytes could be determined. The reflection coefficients (σ j 'S) of the potato tuber mitochondria for alcohols became progressively larger as hydroxymethyl groups were added to the molecule,viz. methanol (σ j =0.07), ethylene glycol (0.25), glycerol (0.44),meso-erythritol (0.71) and adonitol (0.98). This increase in σ j (decrease in permeativity) with increasing chain length parallels the decreasing lipid-water partition coefficients of the solutes. The reflection coefficients ofd-sorbitol (1.02) and ofd-mannitol (0.99) indicate that these six-carbon polyhydroxy alcohols are relatively impermeant and hence they would be suitable osmotica in which to suspend mitochondria. The σ j 'S varied from 0.96 to 1.02 forD-ribose,D-xylose,D-lyxose,D-arabinose, α-D-glucose, β-D-glucose,D-galactose,D-mannose, glycine,L-alanine,L-threonine,L-phenylalanine,L-methionine andL-cysteine, indicating that these sugars and amino acids do not readily diffuse across the pair of membranes surrounding potato mitochondria. By contrast, the σ j 'S of liver mitochondria for glycine and of pea chloroplasts for most of the same aldopentoses and amino acids are close to zero. Thus, different organelles can vary widely in their permeability properties for nonelectrolytes.

Keywords

Reflection Coefficient Potato Tuber Aldose Polyhydroxy Adonitol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amoore, J. E., Bartley, W. 1958. The permeability of isolated rat-liver mitochondria to sucrose, sodium chloride and potassium chloride at 0°.Biochem. J. 69:223.Google Scholar
  2. 2.
    Bentzel, C. J., Solomon, A. K. 1967. Osmotic properties of mitochondria.J. Gen. Physiol. 50:1547.Google Scholar
  3. 3.
    Collander, R. 1949. Die Verteilung organischer Verbindungen zwischen Äther und Wasser.Acta Chem. Scand. 3:717.Google Scholar
  4. 4.
    Diamond, J. D., Wright, E. M. 1969. Biological membranes: The physical basis of ion and nonelectrolyte selectivity.Ann. Rev. Physiol. 31:581.Google Scholar
  5. 5.
    Gamble, J. L., Jr., Garlid, K. D. 1970. The permeability of the mitochondrial inner membrane to sucrose.Biochim. Biophys. Acta 211:223.Google Scholar
  6. 6.
    Garfinkel, D. 1963. Penetration of amino acids into isolated mitochondria.J. Biol. Chem. 238:2440.Google Scholar
  7. 7.
    Harris, E. J., Dam, K. van. 1968. Changes of total water and sucrose space accompanying induced ion uptake or phosphate swelling of rat liver mitochondria.Biochem. J. 106:759.Google Scholar
  8. 8.
    Hogeboom, G. H., Schneider, W. C., Pallade, G. E. 1948. Cytochemical studies of mammalian tissue. I. Isolation of intact mitochondria from rat liver; some biochemical properties of mitochondria and submicroscopic particulate material.J. Biol. Chem. 172:619.Google Scholar
  9. 9.
    Hunter, G. R., Brierley, G. P. 1969. Ion transport by heart mitochondria. XIV. The mannitol-impermeable compartment of the mitochondrion and its relation to ion uptake.Biochim. Biophys. Acta 180:68.Google Scholar
  10. 10.
    Kedem, O., Katchalsky, A. 1958. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes.Biochim. Biophys. Acta 27:229.Google Scholar
  11. 11.
    Laties, G. G. 1972. Isolation of mitochondria from plant material.In: Methods in Enzymology, Biomembranes Volume. S. P. Colowick and N. O. Kaplan, editors. Academic Press Inc., New York. (In press.)Google Scholar
  12. 12.
    Laties, G. G., Treffry, T. 1969. Reversible changes in conformation of mitochondria of constant volume.Tissue & Cell 1:575.Google Scholar
  13. 13.
    Malamed, S., Recknagel, R. D. 1959. The osmotic behavior of the sucrose-inaccessible space of mitochondrial pellets from rat liver.J. Biol. Chem. 234:3027.Google Scholar
  14. 14.
    Nobel, P. S. 1969. Density of pea chloroplasts determined by four different methods.Biochim. Biophys. Acta 189:452.Google Scholar
  15. 15.
    Nobel, P. S. 1970. Plant Cell Physiology: A Physicochemical Approach. pp. 21, 54, 119. W. H. Freeman, San Francisco.Google Scholar
  16. 16.
    Nobel, P. S., Cheung, Y.-N. S. 1972. Two amino-acid carriers in pea chloroplasts.Nature, New Biol. 237:207.Google Scholar
  17. 17.
    Nobel, P. S., Wang, C.-T. 1970. Amino acid permeability of pea chloroplasts as measured by osmotically determined reflection coefficients.Biochim. Biophys. Acta 211:79.Google Scholar
  18. 18.
    O'Brien, R. L., Brierley, G. 1965. Compartmentation of heart mitochondria. I. Permeability characteristics of isolated beef heart mitochondria.J. Biol. Chem. 240:4527.Google Scholar
  19. 19.
    Raaflaub, J. 1953. Die Schwellung isolierter Leberzellmitochondrien und ihre physikalisch-chemische Beeinflußbarkeit.Helv. Physiol. Acta 11:142.Google Scholar
  20. 20.
    Tarr, J. S., Jr., Gamble, J. L., Jr. 1966. Osmotically active space in mitochondria.Amer. J. Physiol. 211:1187.Google Scholar
  21. 21.
    Tedeschi, H. 1965. Some observations on the permeability of mitochondria to sucrose.J. Cell Biol. 25:229.Google Scholar
  22. 22.
    Tedeschi, H., Harris, D. L. 1955. The osmotic behavior and permeability to non-electrolytes of mitochondria.Arch. Biochem. Biophys. 58:52.Google Scholar
  23. 23.
    Wang, C.-T., Nobel, P. S. 1971. Permeability of pea chloroplasts to alcohols and aldoses as measured by reflection coefficients.Biochim. Biophys. Acta 241:200.Google Scholar
  24. 24.
    Wright, E. M., Prather, J. W. 1970. The permeability of the frog choroid plexus to nonelectrolytes.J. Membrane Biol. 2:127.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1973

Authors and Affiliations

  • Park S. Nobel
    • 1
  1. 1.Department of Biology and Molecular Biology InstituteUniversity of CaliforniaLos Angeles

Personalised recommendations