Advertisement

The Journal of Membrane Biology

, Volume 12, Issue 1, pp 145–158 | Cite as

ATP-driven chloride pumping and ATPase activity in theLimonium salt gland

  • B. S. Hill
  • A. E. Hill
Article

Summary

Using the short-circuit current as a measure of the electrogenic chloride transport in the salt glands ofLimonium, the effects of various inhibitors, of light-dark changes and of oxygen removal have been studied during steady-state pumping. The results are consistent with the hypothesis that ATP is the energy source for the chloride pump in this system.

When microsomes from salt-loaded tissue are tested for ATPase activity, a substantial fraction of this is found to be chloride-stimulated. In uninduced tissue the Cl-ATPase activity is very much lower, and the induction by salt-loading can be blocked by puromycin. The parallels with Cl-pumping in this tissue are close enough to assume that the Cl-ATPase activity is that of the pump itself; the way is therefore open to study the pumpin vitro.

Keywords

Oxygen Chloride Energy Source Human Physiology ATPase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson, M. R., Polya, G. M. 1967. Salt-stimulated adenosine triphosphatases from carrot, beet andChara australis.Aust. J. Biol. Sci. 20:1069.Google Scholar
  2. Bonting, S. L., Caravaggio, L. L. 1966. Studies on Na+−K+-activated adenosine triphosphatase. XVI. Its absence from the cation transport system ofUlva lactuca.Biochim. Biophys. Acta 112:519.Google Scholar
  3. Fisher, J., Hodges, T. K. 1969. Monovalent ion stimulated adenosine triphosphatase from oat roots.Plant Physiol. 44:385.Google Scholar
  4. Fiske, C. H., Subbarow, Y. 1925. the colorimetric determination of phosphorus.J. Biol. Chem. 66:375.Google Scholar
  5. Hill, A. E. 1967. Ion and water transport inLimonium. II. Short-circuit analysis.Biochim. Biophys. Acta 135:461.Google Scholar
  6. Hill, A. E. 1970. Ion and water transport inLimonium. IV. Delay effects in the transport system.Biochim. Biophys. Acta 196:73.Google Scholar
  7. Hill, A. E., Hill, B. S. 1973. The electrogenic chloride pump of theLimonium salt gland.J. Membrane Biol. 12:129.Google Scholar
  8. Jeschke, W. D. 1967. Die cyclische und die nichtcyclische Photophosphorylierung als Energiequellen der lichtabhängigen Chloridionaufnahme beiElodea.Planta 73:161.Google Scholar
  9. Jeschke, W. D., Simonis, W. 1969. Über die Wirkung von CO2 auf die lichtabhängige Cl-Aufnahme beiElodea densa: Regulation zwischen nichtcyclischer und cyclischer Photophosphorylierung.Planta 88:157.Google Scholar
  10. Kylin, A., Gee, R. 1970. Adenosine triphosphatase in leaves of the mangrove,Avicennia nitida Jacq. Influence of sodium to potassium ratios and salt concentrations.Plant Physiol. 45:169.Google Scholar
  11. Lai, Y. F., Thompson, J. E. 1971. The preparation and properties of an isolated plant membrane fraction enriched in (Na+−K+)-stimulated ATPase.Biochim. Biophys. Acta 233:84.Google Scholar
  12. Latzko, E., Gibbs, M. 1969. Levels of photosynthetic intermediates in isolated spinach chloroplasts.Plant Physiol. 43:396.Google Scholar
  13. Lüttge, U., Pallaghy, C. K., Osmond, C. B. 1970. Coupling of ion transport in green cells ofAtriplex spongiosa leaves to energy sources in the light and in the dark.J. Membrane Biol. 2:17.Google Scholar
  14. MacRobbie, E. A. C. 1965. The nature of the coupling between light energy and active ion transport inNitella translucens.Biochim. Biophys. Acta 94:64.Google Scholar
  15. MacRobbie, E. A. C. 1966. Metabolic effects on ion transport inNitella translucens. I. Active influxes.Aust. J. Biol. Sci. 19:363.Google Scholar
  16. MacRobbie, E. A. C. 1970. The active transport of ions in plant cells.Quart. Rev. Biophys. 3:251.Google Scholar
  17. Raven, J. A. 1967. Light-stimulation of active ion transport inHydrodictyon africanum.J. Gen. Physiol. 50:1627.Google Scholar
  18. Raven, J. A. 1968. Photosynthesis and light-stimulated ion transport inHydrodictyon africanum.Abh. dt. Akad. Wiss. Berl. 4 a:145.Google Scholar
  19. Raven, J. A. 1969. Effects of inhibitors on photosynthesis and the active influxes of K and Cl inHydrodictyon africanum.New Phytol. 69:1089.Google Scholar
  20. Shachar-Hill, B., Hill, A. E. 1970. Ion and water transport inLimonium. VI. The induction of chloride pumping.Biochim. Biophys. Acta 211:313.Google Scholar
  21. Smith, F. A. 1968. Metabolic effects on ion fluxes inTolypella intricata.J. Exp. Bot. 19:442.Google Scholar
  22. Smith, F. A., West, K. R. 1969. A comparison of the effects of metabolic inhibitors on chloride uptake and photosynthesis inChara corallina.Aust. J. Biol. Sci. 22:351.Google Scholar
  23. Spear, D. G., Barr, J. K., Barr, C. E. 1969. Localisation of hydrogen ion and chloride ion fluxes inNitella.J. Gen. Physiol. 54:397.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1973

Authors and Affiliations

  • B. S. Hill
    • 1
    • 2
  • A. E. Hill
    • 1
    • 2
  1. 1.Life Science InstituteThe Hebrew UniversityJerusalem
  2. 2.The Botany SchoolUniversity of CambridgeCambridgeEngland

Personalised recommendations