Advertisement

The Journal of Membrane Biology

, Volume 19, Issue 1, pp 195–220 | Cite as

Pathways for movement of ions and water across toad urinary bladder

II. Site and mode of action of vasopressin
  • Mortimer M. Civan
  • Donald R. DiBona
Article

Summary

Application of either mucosal hypertonicity or serosal hypotonicity increases the electrical conductance of toad urinary bladder by altering the permeability of the apical intercellular junctions which are rate-limiting to transepithelial flow of ions and water between the cells. Prior addition of vasopressin has been found to inhibit both the electrical and morphologic effects. In the presence of mucosal hypertonicity, the hormone also induces shrinkage of the granular cells, with no perceptible change in the volume of the other epithelial cells. The skin ofXenopus laevis is similarly responsive to increases in tonicity of the outer bathing medium but here, where vasopressin exerts a natriferic but not a hydroosmotic effect, hormone administration does not inhibit the osmotically induced electrical and morphologic changes. These results may be interpreted within the framework of current concepts concerning the granular cell response to vasopressin and the response of the limiting junctions to transepithelial osmotic gradients. Vasopressin facilitates hydroosmotic flow in either direction across the epithelium, specifically by increasing the water permeability of the luminal-facing plasma membrane of the granular cells.

Keywords

Epithelial Cell Electrical Conductance Morphologic Change Cell Response Vasopressin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Argy, W. P., Jr., Handler, J. S., Orloff, J. 1967. Ca++ and Mg++ effects on toad bladder response to cyclic AMP, theophylline, and ADH analogues.Amer. J. Physiol. 213:803PubMedGoogle Scholar
  2. 2.
    Bär, H.-P., Hechter, O., Schwartz, I. L., Walter, R. 1970. Neurohypophyseal hormone-sensitive adenyl cyclase of toad urinary bladder.Proc. Nat. Acad. Sci. 67:7PubMedGoogle Scholar
  3. 3.
    Bentley, P. J. 1959. The effects of ionic changes on water transport across the isolated urinary bladder of the toadBufo marinus.J. Endocrinol. 18:327Google Scholar
  4. 4.
    Bentley, P. J. 1960. The effects of vasopressin on the short circuit current across the wall of the isolated bladder of the toadBufo marinus.J. Endocrinol. 21:161Google Scholar
  5. 5.
    Bentley, P. J. 1969. Neurohypophyseal hormones in amphibia: A comparison of their actions and storage.Gen. Comp. Endocrinol. 13:39PubMedGoogle Scholar
  6. 6.
    Bindslev, N., Tormey, J. McD., Pietras, R. J., Wright, E. M. 1974. Electrically and osmotically induced changes in permeability and structure of toad urinary bladder.Biochim. Biophys. Acta 332:286Google Scholar
  7. 7.
    Boulpaep, E. L. 1967. Ion permeability of the peritubular and luminal membrane of the renal tubular cell.In: Symposium über Transport und Funktion Intracellulärer Elektrolyte. F. Kruck editor. pp. 98–107. Urban und Schwarzenberg. MunichGoogle Scholar
  8. 8.
    Civan, M. M. 1970. Effects of active sodium transport on current-voltage relationships of toad bladders.Amer. J. Physiol. 219:234PubMedGoogle Scholar
  9. 9.
    Civan, M. M. 1970. Path of bulk water movement through the urinary bladder of the toad.J. Theoret. Biol. 27:387Google Scholar
  10. 10.
    Civan, M. M., DiBona, D. R. 1973. Interaction of trans- and intercellular pathways across toad bladder.13th Annu. Meet. Amer Soc. Cell Biol., Abstr. 110, p55aGoogle Scholar
  11. 11.
    Civan, M. M., Frazier, H. S. 1968. The site of the stimulating action of vasopressin on sodium transport in toad bladder.J. Gen. Physiol. 51:589PubMedGoogle Scholar
  12. 12.
    Civan, M. M., Kedem, O., Leaf, A. 1966. Effect of vasopressin on toad bladder under conditions of zero net sodium transport.Amer. J. Physiol. 211:569PubMedGoogle Scholar
  13. 13.
    DiBona, D. R. 1972. Passive pathways in amphibian epithelia: Morphologic evidence for an intercellular route.Nature, New Biol. 238:179Google Scholar
  14. 14.
    DiBona, D. R., Civan, M. M. 1969. Toad urinary bladder: Intercellular spaces.Science 165:503PubMedGoogle Scholar
  15. 15.
    DiBona, D. R., Civan, M. M. 1970. The effect of smooth muscle on the intercellular spaces in toad urinary bladder.J. Cell. Biol. 46:235PubMedGoogle Scholar
  16. 16.
    DiBona, D. R., Civan, M. M. 1972. Clarification of the intercellular space phenomenon in toad urinary bladder.J. Membrane Biol. 7:267Google Scholar
  17. 17.
    DiBona, D. R., Civan, M. M. 1973. Pathways for movement of ions and water across toad urinary bladder. I. Anatomic site of transepithelial shunt pathways.J. Membrane Biol. 12:101Google Scholar
  18. 18.
    DiBona, D. R., Civan, M. M., Leaf, A. 1969. The anatomic site of the transepithelial permeability barriers of toad bladder.J. Cell. Biol. 40:1PubMedGoogle Scholar
  19. 19.
    DiBona, D. R., Civan, M. M., Leaf, A. 1969 The cellular specificity of the effect of vasopressin on toad urinary bladder.J. Membrane Biol. 1:79Google Scholar
  20. 20.
    Farquhai, M., Palade, G. E. 1963. Junctional complexes in various epithelia.J. Cell Biol. 17:375PubMedGoogle Scholar
  21. 21.
    Finn, A. L. 1971. The kinetics of sodium transport in the toad bladder. II. Dual effects of vasopressin.J. Gen. Physiol. 57:349PubMedGoogle Scholar
  22. 22.
    Frizzell, R. A., Schultz, S. G. 1972. Ionic conductances of extracellular shunt pathway in rabbit ileum. Influence of shunt on transmural sodium transport and electrical potential differences.J. Gen. Physiol. 59:218Google Scholar
  23. 23.
    Frömter, E., Diamond, J. 1972. Route of passive ion permeation in epithelia.Nature 235:9PubMedGoogle Scholar
  24. 24.
    Ginetzinsky, A. G. 1958. Role of hyaluronidase in the reabsorption of water in the renal tubules: The mechanism of action of the antidiuretic hormone.Nature 182:1218PubMedGoogle Scholar
  25. 25.
    Ginetzinsky, A. G., Krestinskaya, T. V., Natochin, Ju. V., Sax, M. G., Titova, L. K. 1960. Evolution of the substrate acted upon by antidiuretic hormone.Physiol. Bohem. 9:166Google Scholar
  26. 26.
    Glynn, I. M., Hoffman, J. F., Lew, V. L. 1971. Some ‘partial reactions’ of the sodium pump.Phil. Trans. 262:91Google Scholar
  27. 27.
    Handler, J. S., Butcher, R. W., Sutherland, E. W., Orloff, J. 1965. The effect of vasopressin and of theophylline on the concentration of adenosine 3′,5′-phosphate in the urinary bladder of the toad.J. Biol. Chem. 240:4524PubMedGoogle Scholar
  28. 28.
    Handler, J. S., Preston, A. S., Orloff, J. 1972. Effects of ADH, aldosterone, ouabain, and amiloride on toad bladder epithelial cells.Amer. J. Physiol. 222:1071PubMedGoogle Scholar
  29. 29.
    Hynie, S., Sharp, G. W. G. 1971. Adenyl cyclase in the toad bladder.Biochim. Biophys. Acta 230:40PubMedGoogle Scholar
  30. 30.
    Janáček, K., Morel, F., Bourguet, J. 1968. Étude expérimentale des potentiels électriques et des activités ioniques dans les cellules épithéliales de la vessie de Grenouille.J. Physiol., Paris 60:51Google Scholar
  31. 31.
    Janáček, K., Rybová, R. 1967. Stimulation of the sodium pump in frog bladder by oxytocin.Nature 215:992PubMedGoogle Scholar
  32. 32.
    Janáček, K., Rybová, R. 1970. Nonpolarized frog bladder preparation: The effects of oxytocin.Pflüg. Arch. Ges. Physiol. 318:294Google Scholar
  33. 33.
    Kregenow, F. M. 1971. The response of duck erythrocytes to hypertonic media: Further evidence for a volume-controlling mechanism.J. Gen. Physiol. 58:396PubMedGoogle Scholar
  34. 34.
    Lipson, L. C., Sharp, G. W. G. 1971. Effect of prostaglandin E1 on sodium transport and osmotic water flow in the toad bladder.Amer. J. Physiol. 220:1046PubMedGoogle Scholar
  35. 35.
    Lipton, P., Edelman, I. S. 1971. Effects of aldosterone and vasopressin on electrolytes of toad bladder epithelial cells.Amer. J. Physiol. 221:733PubMedGoogle Scholar
  36. 36.
    Loewenstein, W. R., Socolar, S. J., Higashino, S., Kanno, Y., Davidson, N. 1965. Intercellular communication: Renal, urinary bladder, sensory, and salivary gland cells.Science 149:295Google Scholar
  37. 37.
    Macknight, A. D. C., Leaf, A., Civan, M. M. 1970. Vasopressin: Evidence for the cellular site of the induced permeability change.Biochim. Biophys. Acta 222:560PubMedGoogle Scholar
  38. 38.
    Macknight, A. D. C., Leaf, A., Civan, M. M. 1970. Effects of vasopressin on the water and ionic composition of toad bladder epithelial cells.J. Membrane Biol. 6:127Google Scholar
  39. 39.
    Maetz, J. 1963. Physiological aspects of neurohypophyseal function in fishes with some reference to the Amphibia.Symp. Zool. Soc. London 9:107Google Scholar
  40. 40.
    Mandel, L., Curran, P. F. 1972. Response of the frog skin to steady-state voltage clamping. I. The shunt pathway.J. Gen. Physiol. 59:403Google Scholar
  41. 41.
    Masur, S. K., Holtzman, E., Schwartz, I. L., Walter, R. 1971. Correlation between pinocytosis and hydroosmosis induced by neurohypophyseal hormones and mediated by adenosine 3′,5′-cyclic monophosphate.J. Cell Biol. 49:582PubMedGoogle Scholar
  42. 42.
    Orloff, J., Handler, J. S. 1962. The similarity of effects of vasopressin, adenosine-3′,5′-phosphate (cyclic AMP) and theophylline on the toad bladder.J. Clin. Invest. 41:702PubMedGoogle Scholar
  43. 43.
    Orloff, J., Handler, J. S. 1967. The role of adenosine 3′,5′-phosphate in the action of antidiuretic hormone.Amer. J. Med. 42:757PubMedGoogle Scholar
  44. 44.
    Parker, J. C., Hoffman, J. F. 1965. Independence of cation permeability, cell volume, and metabolism in dog red cells.Fed. Proc. 24:589Google Scholar
  45. 45.
    Petersen, M. J., Edelman, I. S. 1964. Calcium inhibition of the action of vasopressin on the urinary bladder of the toad.J. Clin. Invest. 43:583PubMedGoogle Scholar
  46. 46.
    Scott, W. N., Sapirstein, V. S., Yoder, M. J. 1973. Localization of transport-related enzymes in the toad bladder epithelium.6th Annu. Meet., Amer. Soc. Nephrol. p. 93Google Scholar
  47. 47.
    Urakabe, S., Handler, J. S., Orloff, J. 1970. Effect of hypertonicity on permeability properties of the toad bladder.Amer. J. Physiol. 218:1179PubMedGoogle Scholar
  48. 48.
    Ussing, H. H., Windhager, E. E. 1964. Nature of shunt path and active sodium transport path through frog skin epithelium.Acta Physiol. Scand. 61:484PubMedGoogle Scholar
  49. 49.
    Wade, J. B., Revel, J. P., DiScala, V. A. 1973. Effect of osmotic gradients on intercellular junctions of the toad bladder.Amer. J. Physiol. 224:407PubMedGoogle Scholar
  50. 50.
    Yonath, J., Civan, M. M. 1971. Determination of the driving force of the Na+ pump in toad bladder by means of vasopressin.J. Membrane Biol. 5:366Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1974

Authors and Affiliations

  • Mortimer M. Civan
    • 1
    • 2
    • 3
  • Donald R. DiBona
    • 1
    • 2
    • 3
  1. 1.Departments of Physiology and MedicineUniversity of Pennsylvania School of MedicinePhiladelphia
  2. 2.Department of MedicineMassachusetts General HospitalBoston
  3. 3.Departments of Anatomy and MedicineHarvard Medical SchoolBoston

Personalised recommendations