The Journal of Membrane Biology

, Volume 19, Issue 1, pp 141–162 | Cite as

Ionophoric material derived from eel membrane preparations

II. Electrical characteristics
  • Robert Blumenthal
  • Adil E. Shamoo


Ionophoric material isolated by tryptic digestion of (Na++K+)-ATPase containing electroplax membranes shows fluctuating discrete current levels in oxidized cholesterol membranes with conductance amplitudes ranging from 10−10 to 10−9 mhos, suggesting pore formation. The rate of pore formation is dependent on the imposed voltage. If the voltage is maintained for a short time (5 to 10 sec), pore formation is reversible, whereas permanent pores are formed when the voltage is maintained for more than 10 sec. At pH=7 the permeability ratio for sodium versus chloride is 5 and for potassium versus sodium, 1.7. The permeability of the ionophoric material is dependent on pH. At pH=6 a conversion takes place from more cation-permeable to more anionpermeable pores, suggesting that histidine plays a role in the permeation mechanism. A model is proposed to account for the observed ionophoric properties.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albers, R. W., Koval, G. J., Siegel, G. J. 1968. Studies on the interaction of ouabain and other cardioactive steriods with sodium-potassium-activated adenosine triphosphatase.Mol. Parmacol. 4:324.Google Scholar
  2. Bamberg, E., Läuger, P. 1973. Channel formation kinetics of gramicidin A in lipid bilayer membranes.J. Membrane Biol. 11:177Google Scholar
  3. Bean, R. C., Shepherd, W. C., Chan, H., Eichner, J. T. 1969. Discrete conductance fluctuations in lipid bilayer protein membranes.J. Gen. Physiol. 53:741.PubMedGoogle Scholar
  4. Cass, A., Finkelstein, A., Krespi, V. 1970. The ion permeability in thin lipid membranes by the polyene antibiotics nystatin and amphotericin.J. Gen. Physiol. 56:100CrossRefPubMedGoogle Scholar
  5. Changeux, J.-P., Kasai, M., Lee, Ch.-Y. 1970. Use of a snake venom toxin to characterize the cholinergic receptor protein.Proc. Nat. Acad. Sci. 67:1241.PubMedGoogle Scholar
  6. Changeux, J.-P., Podleski, T., Kasai, M., Blumenthal, R. 1970. Some molecular aspects of membrane excitation studied with eel electroplax.In: Excitatory Synaptic Mechanisms. P. Anderson and J. J. Jensen editors. p. 123. University Press, OsloGoogle Scholar
  7. Diamond, J. M., Wright, E. M. 1969. Biological membranes: The physical basis of ion and nonelectrolyte selectivity.Annu. Rev. Physiol. 31:581.PubMedGoogle Scholar
  8. Ehrenstein, G., Blumenthal, R., Latorre, R., Lecar, H. 1974. The kinetics of the opening and closing of individual EIM channels in a lipid bilayer.J. Gen. Physiol. 63:707.PubMedGoogle Scholar
  9. Ehrenstein, G., Lecar, H., Nossal, R. 1970. The nature of the negative resistance in bimolecular lipid membranes containing excitability-inducing material.J. Gen. Physiol. 55:119PubMedGoogle Scholar
  10. Eigen, M., DeMaeyer, L. 1971. Carriers and specificity in membranes.Neurosci. Res. Prog. Bull. 9:300Google Scholar
  11. Eisenberg, M., Hall, J. E., Mead, C. A. 1973. The nature of the voltage-dependent conductance induced by alamethicin in black lipid membranes.J. Membrane Biol. 14:143Google Scholar
  12. Fettiplace, R., Andrews, D. M., Haydon, D. A. 1971. The thickness, composition and structure of some lipid bilayers and natural membranes.J. Membrane Biol. 5:277Google Scholar
  13. Gordon, L. G. M., Haydon, D. A. 1972. The unit conductance channel of alamethicin.Biochim. Biophys. Acta 255:1014PubMedGoogle Scholar
  14. Hladky, S. B., Haydon, D. A. 1970. Discreteness of conductance change in bimolecular lipid membranes in the presence of certain antibiotics.Nature 255:451Google Scholar
  15. Hodgkin, A. L., Katz, B. 1949. The effect of sodium ions on the electrical activity of the gaint axon of the squid.J. Physiol. 108:37Google Scholar
  16. Latorre, R., Ehrenstein, G., Lecar, H. 1972. Ion transport through excitability-inducing material (EIM) channels in lipid bilayer membranes.J. Gen. Physiol. 60:72PubMedGoogle Scholar
  17. Mueller, P., Rudin, D. O. 1968. Action potentials induced in bimolecular lipid membranes.Nature 217:713PubMedGoogle Scholar
  18. Muller, R. U., Finkelstein, A. 1973. Voltage-dependent conductance induced in thin lipid membranes by monazomycin.J. Gen. Physiol. 60:263Google Scholar
  19. Olsen, R. W., Meunier, J.-C., Changeux, J.-P. 1972. Progress in the purification of the cholinergic receptor protein from electrophorus electricus by affinity chromatography.FEBS Letters 28:96PubMedGoogle Scholar
  20. Ruiz-Manresa, F., Grundfest, H. 1971. Synaptic electrogenesis in eel electroplaques.J. Gen. Physiol. 57:71PubMedGoogle Scholar
  21. Shamoo, A. E., Albers, R. W. 1973. Na+-selective ionophoric material derived from electric organ and kidney membranes.Proc. Nat. Acad. Sci. 70:1191PubMedGoogle Scholar
  22. Shamoo, A. E., Myers, M. 1974. Na+-dependent ionophore as part of the small polypeptide of the (Na++K+)-ATPase from eel electroplax membrane.J. Membrane Biol. 19:163Google Scholar
  23. Shamoo, A. E., Myers, M., Blumenthal, R., Albers, R. W. 1974. Ionophoric material derived from eel membrane preparation. I. Chemical Characteristics.J. Membrane Biol. 19:129Google Scholar
  24. Szabo, G., Eisenman, G., Ciani, S. 1969. The effects of the macrotetralide actin antibiotics on the electrical properties of phospholipid bilayer membranes.J. Membrane Biol. 1:346Google Scholar
  25. Wyman, J. 1948. Heme proteins.Advanc. Protein Chem. 4:407Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1974

Authors and Affiliations

  • Robert Blumenthal
    • 1
    • 2
  • Adil E. Shamoo
    • 1
    • 2
  1. 1.Laboratory of Theoretical Biology, National Cancer InstituteNational Institutes of HealthBethesda
  2. 2.Department of Radiation Biology and BiophysicsUniversity of Rochester, School of Medicine and DentistryRochester

Personalised recommendations