The Journal of Membrane Biology

, Volume 19, Issue 1, pp 1–36 | Cite as

Changes in axon fluorescence during activity: Molecular probes of membrane potential

  • L. B. Cohen
  • B. M. Salzberg
  • H. V. Davila
  • W. N. Ross
  • D. Landowne
  • A. S. Waggoner
  • C. H. Wang
Article

Summary

The fluorescence of dyes added to squid giant axons was studied during action potentials and voltage-clamp steps. One goal was to find fluorescence changes related to the increases in membrane conductance that underlie propagation. A second goal was to find large changes in fluorescence that would allow optical monitoring of membrane potential in neurons and other cells. Attempts were made to measure fluorescence changes using over 300 different fluorescent molecules and positive results were obtained with more than half of these. No evidence was found that would relate, any of the fluorescence changes to the increases in membrane conductance that accompany depolarization; most, instead, were correlated with the changes in membrane potential. The fluorescence changes of several dyes were relatively large; the largest changes during an action potential were 10−3 of the resting intensity. They could be measured with a signal-to-noise ratio of better than 10∶1 in a single sweep.

Keywords

Positive Result Membrane Potential Human Physiology Molecular Probe Large Change 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong, C. M., Binstock, L. 1965. Anomalous rectification in the squid giant axon injected with tetraethylammonium chloride.J. Gen. Physiol. 48:859PubMedGoogle Scholar
  2. Arvanitaki, A., Chalazonitis, N. 1961. Excitatory and inhibitory processes initiated by light and infra-red radiations in single excitable nerve cells (giant ganglion cells ofAplysia).In: Nervous Inhibition. E. Florey, editor. p. 194. Pergamon Press, New YorkGoogle Scholar
  3. Baker, P. F., Hodgkin, A. L., Ridgway, E. B. 1971. Depolarization and calcium entry in squid giant axons.J. Physiol., Lond. 218:709Google Scholar
  4. Bezanilla, F., Horowicz, P. 1974. Fluorescence changes in frog muscle stained with nile blue associated with excitation-contraction coupling.Fed. Proc. 33:1259Google Scholar
  5. Beyer, C. F., Craig, L. C., Gibbons, W. A. 1973. Structural requirements for binding and fluorescence enhancement of the fluorescent probe TNS with peptides.Nature, New Biol. 241:78Google Scholar
  6. Braddick, H. J. J. 1960. Photoelectric photometry.Prog. Phys. 23:154Google Scholar
  7. Brooker, L. G. S., Keyes, G. H., Sprague, R. H., Van Dyke, R. H., Van Lare, E., Van Zandt, G., White, F. L., Cressman, H. W. J., Dent, S. G., Jr., 1951. Color and constitution. X. Absorption of the merocyanines.J. Amer. Chem. Soc. 73:5332Google Scholar
  8. Bücher, H., Wiegand, J., Snavely, B. B., Beck, K. H., Kuhn, H. 1969. Electric field induced changes in the optical absorption of a merocyanine dye.Chem. Phys. Lett. 3:508Google Scholar
  9. Camejo, G., Villegas, G. M., Barnola, F. V., Villegas, R. 1969. Characterization of two different membrane fractions isolated from the first stellar nerves of the squid,Dosidicus gigas.Biochim. Biophys. Acta 193:247PubMedGoogle Scholar
  10. Caswell, A. H., Hutchison, J. D. 1971. Visualization of membrane bound cations by a fluorescent technique.Biochem. Biophys. Res. Commun. 42:43PubMedGoogle Scholar
  11. Chance, B. 1973. Electrochromic responses of merocyanine probes in energy coupling responses of submitochondrial particles (SMP).Fed. Proc. 32:669 (abs.)Google Scholar
  12. Cohen, L. B. 1973. Changes in neuron structure during action potential propagation and synaptic transmission.Physiol. Rev. 53:373PubMedGoogle Scholar
  13. Cohen, L. B., Davila, H. V., Waggoner, A. S. 1971. Changes in axon fluorescence.Biol. Bull., Woods Hole 141:382 (Abstr.)Google Scholar
  14. Cohen, L. B., Hille, B., Keynes, R. D. 1969. Light scattering and birefringence changes during activity in the electric organ ofElectrophorus electricus.J. Physiol., Lond. 203:489Google Scholar
  15. Cohen, L. B., Hille, B., Keynes, R. D., Landowne, D., Rojas, E. 1971. Analysis of the potential-dependent changes in optical retardation in the squid giant axon.J. Physiol., Lond. 218:205Google Scholar
  16. Cohen, L. B., Keynes, R. D., Landowne, D. 1972a. Changes in light scattering that accompany the action potential in squid giant axons: Potential-dependent components.J. Physiol., Lond. 224:701Google Scholar
  17. Cohen, L. B., Keynes, R. D., Landowne, D. 1972b. Changes in axon light scattering that accompany the action potential: Current-dependent components.J. Physiol., Lond. 224:727Google Scholar
  18. Cohen, L. B., Landowne, D., Shrivastav, B., Ritchie, J. M. 1970. Changes in fluorescence of squid axons during activity.Biol. Bull., Woods Hole 139:418 (abs.)Google Scholar
  19. Cohen, L. B., Salzberg, B. M., Davila, H. V. 1973. Changes in fluorescence of a squid giant axon during excitation, a demonstration.Biol. Bull., Woods Hole 145:429 (abs.)Google Scholar
  20. Cole, K. S., Curtis, H. J. 1939. Electrical impedance of the squid giant axon during activity.J. Gen. Physiol. 22:649Google Scholar
  21. Colour Index, 3rd ed., 1971. Society of Dyers and Colourists and American Association of Textile Chemists and ColoristsGoogle Scholar
  22. Colquhoun, D., Henderson, R., Ritchie, J. M. 1972. The binding of labeled tetrodotoxin to non-myelinated nerve fibres.J. Physiol., Lond. 227:95Google Scholar
  23. Conti, F., Tasaki, I. 1970. Changes in extrinsic fluorescence in squid axons during voltage-clamp.Science 169:1322PubMedGoogle Scholar
  24. Conti, F., Tasaki, I., Wanke, E. 1971. Fluorescence signals in ANS-stained squid giant axons during voltage clamp.Biophysik 8:58PubMedGoogle Scholar
  25. Czikkely, V., Dreizler, G., Försterling, H. D., Kuhn, H., Sondermann, J., Tillmann, P., Wiegand, J. 1969. Lichtabsorption von Farbstoff-Molekülpaaren in Sandwichsystemen aus monomolekularen Schichten.Z. Naturf. 249:1821Google Scholar
  26. Davila, H. V., Cohen, L. B., Salzberg B. M., Shrivastav, B. B. 1974. Changes in ANS and TNS fluorescence in giant axons fromLoligo.J. Membrane Biol. 15:29Google Scholar
  27. Davila, H. V., Salzberg, B. M., Cohen, L. B., Waggoner, A. S. 1973. A large change in axon fluorescence that provides a promising method for measuring membrane potential.Nature, New Biol. 241:159Google Scholar
  28. Dobres, H. L., Moats, W. A. 1968. Qualitative analysis by thin layer chromatography of some common dyes used in biological staining.Stain Tech. 43:27Google Scholar
  29. Dunnigan, M. G. 1968. Chromatographic separation and photometric analysis of the components of nile blue sulphate.Stain Tech. 43:243Google Scholar
  30. Emrich, H. M., Junge, W., Witt, H. T.. 1969. An artificial indicator for electric phenomena in biological membranes and interfaces.Naturwissenschaften 56:514PubMedGoogle Scholar
  31. Furusawa, K. 1929. The depolarization of crustacean nerve by stimulation or oxygen want.J. Physiol., Lond. 67:325Google Scholar
  32. Goldring, J. M., Blaustein, M. P. 1973. Synaptosome membrane potential changes monitored with a fluorescent probe. Paper presented at the third annual meeting, Society for Neuroscience, San Diego, California.Google Scholar
  33. Hallett, M., Schneider, A. S., Carbone, E. 1972. Tetracycline fluorescence as calciumprobe for nerve membrane with some model studies using erythrocyte ghosts.J. Membrane Biol. 10:31Google Scholar
  34. Hamer, F. M. 1964. The Cyanine Dyes and Related Compounds. John Wiley & Sons, New YorkGoogle Scholar
  35. Hodgkin, A. L., Huxley, A. F. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve.J. Physiol., Lond. 117:500Google Scholar
  36. Hodgkin, A. L., Keynes, R. D. 1957. Movement of labelled calcium in squid giant axons.J. Physiol., Lond. 138:253Google Scholar
  37. Hoffman, J. F., Laris, P. C. 1974. Determination of membrane potentials in human and amphiuma red blood cells using a fluorescent probe.J. Physiol., Lond. 239:519Google Scholar
  38. Keynes, R. D. 1963. Chloride in the squid giant axon.J. Physiol., Lond. 169:690Google Scholar
  39. Landowne, D. 1974. Changes in fluorescence of skeletal muscle stained with merocyanine associated with excitation-contraction coupling.J. Gen. Physiol. (In press) Google Scholar
  40. Levin, S. V., Rozenthal, D. L., Komissarchik, Y. Y. 1968. Structure changes in the axon membrane on excitation.Biofizika 13:180Google Scholar
  41. Lillie, R. D. 1969. H. J. Conn's Biological Stains, 8th Ed. Williams & Wilkins, BaltimoreGoogle Scholar
  42. Löhr, W., Wittekind, D. 1973. Vitalfärbung mit Derivaten des Phenothiazins.Z. Zellforsch. 137:125PubMedGoogle Scholar
  43. Malley, M., Feher, G., Mauzerall, D. 1968. The Stark effect in porphyrins.J. Mol. Spectroscopy 25:544Google Scholar
  44. Moore, J. W., Narahashi, T., Shaw, T. I. 1967. An upper limit to the number of sodium channels in nerve membrane?J. Physiol., Lond. 188:99Google Scholar
  45. Muralt, A. von. 1971. “Optical spike” during excitation in peripheral nerve.Abstr. 25th Int. Physiol. Congr., Munich. p. 638Google Scholar
  46. Nasonov, D. N. 1962. Local Reaction of Protoplasm and Gradual Excitation. Akademiya Nauk SSSR, Moscow-Leningrad. (Translated by the Israel Program for Scientific Translations, Jerusalem.)Google Scholar
  47. Platt, J. R. 1962. Electrochromism, a possible change of color producible in dyes by an electric field.J. Chem. Phys. 34:862Google Scholar
  48. Pooler, J. 1972. Photodynamic alteration of sodium currents in lobster axons.J. Gen. Physiol. 60:367PubMedGoogle Scholar
  49. Salzberg, B. M., Davila, H. V., Cohen, L. B. 1973. Optical recording of impulses in individual neurons of an invertebrate central nervous system.Nature 246:508PubMedGoogle Scholar
  50. Salzberg, B. M., Davila, H. V., Cohen, L. B., Waggoner, A. S. 1972. A large change in axon fluorescence, potentially useful in the study of simple nervous systems.Biol. Bull., Woods Hole 143:475 (abs.)Google Scholar
  51. Sims, P. J., Wang, C. H., Waggoner, A. S., Hoffman, J. F. 1974. The cyanine dyes as probes of membrane potential.Biochemistry 13:3315PubMedGoogle Scholar
  52. Tasaki, I., Carnay, L., Watanabe, A. 1969. Transient changes in extrinsic fluorescence of nerve produced by electric stimulation.Proc. Nat. Acad. Sci. 64:1362PubMedGoogle Scholar
  53. Tasaki, I., Watanabe, A., Hallett, M. 1972. Fluorescence of squid axon membrane labelled with hydrophobic probes.J. Membrane Biol. 8:109Google Scholar
  54. Villegas, G. M. 1969. Electron microscopic study of the giant nerve fiber of the giant squidDosidicus gigas.J. Ultrastruct. Res. 26:501PubMedGoogle Scholar
  55. West, W., Pearce, S. 1965. The dimeric state of cyanine dyes.J. Phys. Chem. 69:1894Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1974

Authors and Affiliations

  • L. B. Cohen
    • 1
    • 2
    • 3
  • B. M. Salzberg
    • 1
    • 2
    • 3
  • H. V. Davila
    • 1
    • 2
    • 3
  • W. N. Ross
    • 1
    • 2
    • 3
  • D. Landowne
    • 1
    • 2
    • 3
  • A. S. Waggoner
    • 1
    • 2
    • 3
  • C. H. Wang
    • 1
    • 2
    • 3
  1. 1.Department of PhysiologyYale University School of MedicineNew Haven
  2. 2.Department of ChemistryAmherst CollegeAmherst
  3. 3.The Marine Biological LaboratoryWoods Hole

Personalised recommendations