Advertisement

The Journal of Membrane Biology

, Volume 65, Issue 3, pp 175–184 | Cite as

The proton gradient across the vacuo-lysosomal membrane of lutoids from the latex ofHevea brasiliensis. I. Further evidence for a proton-translocating ATPase on the vacuo-lysosomal membrane of intact lutoids

  • Hervé Cretin
Articles

Summary

Lutoids (vacuo-lysosomal particles) were isolated from the latex ofHevea brasiliensis. Using flow dialysis with14C-methylamine uptake as a ΔpH probe and86Rb rubidium+valinomycin distribution for estimations of transmembrane electrical potential, intact lutoids exhibited a ΔpH of 1 unit (interior more acid) and a ΔΨ of −70 mV (interior negative), when suspended in an isotonic medium at physiological concentration of potassium (30mm) and pH 7.0, in the absence of ATP. In most cases, the Donnan potential was shown to fully account for ΔpH in nonenergized lutoids. The addition of Mg-ATP (5mm) resulted in a marked acidification of the lutoidic internal space (0.7 to 1 pH unit) depending on the composition of the medium, and in a membrane depolarization by 60 mV (interior becoming less negative). The resulting electrochemical potential of protons (\(\Delta \tilde \mu H\)) increased by a hundred millivolts when lutoids were energized by ATP. These data strongly support an inward electrogenic proton translocating function for the ATPase of the vacuo-lysosomal membrane of lutoids. Results are discussed in terms of thein vivo maintenance of large “lutoids/cytoplasm” proton gradients, and of the rôle of these vacuo-lysosomes in the homeostasis of the cytoplasmic metabolism.

Key words

tonoplast ATPase proton pump electrochemical proton gradient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, H. 1965. Adénosine-5′ diphosphate and adenosine-5′-monophosphate.In: Methods of Enzymatic analysis. H.U. Bergmeyer, editor. pp. 573–580. Academic Press, New YorkGoogle Scholar
  2. Altendorf, K., Hiarata, H., Harol, F.M. 1975. Accumulation of lipid soluble ions and of rubidium as indicators of the electrical potential in membrane vesicles ofEscherichia coli.J. Biol. Chem 250:1405–1412PubMedGoogle Scholar
  3. Archer, B.L., Barnard, D., Cockbain, E.G., Dickenson, P.B., McMullen, A.I. 1963. Structure, composition and biochemistry of latex.In: The Chemistry and Physics of Rubberlike Substances. pp. 41–72. McLaren & Sons, Ltd., LondonGoogle Scholar
  4. d'Auzac, J. 1975. Caractérisation d'une ATPase membranaire en présence d'une phosphatase acide dans les lutoïdes du latex d'Hevea brasiliensis.Phytochemistry 14:671–675Google Scholar
  5. d'Auzac, J. 1977. ATPase membranaire de vacuoles lysosomales: Les lutoïdes du latex d'Hevea brasiliensis.Phytochemistry 16:1881–1885Google Scholar
  6. d'Auzac, J. Brzozowska, J., Hanower, P., Lambert, C., Lioret, C., Niamien N'Goran, M. 1977a. 1. Accumulation et pénétration du citrate et de la lysine dans les lutoïdes.In: Echanges ioniques Transmembranaires Chez les Végétaux.Colloq. C.N.R.S., Ed. CNRS Rouen, No. 258, pp. 392–398Google Scholar
  7. d'Auzac, J., Dupont, J., Jacob, J.L., Lance, C., Marin, B., Moreau, F. 1977b. Un modèle de structure vacuolaire isolée intacte: Les lutoïdes du latex d'Hevea brasiliensis. 2. Caractéristique de la membrane lutoïdique.In: Echanges Ioniques Transmembranaires Chez les Végétaux.Colloq. C.N.R.S., Ed. CNRS Rouen, No. 258, pp. 399–406Google Scholar
  8. d'Auzac, J., Lioret, C. 1974. Mise en évidence d'un mécanisme d'accumulation du citrate dans les lutoïdes du latex d'Hevea brasiliensis.Physiol. Veg. 12:617–635Google Scholar
  9. Brzozowska, J., Hanower, P., Chezeau, R. 1974. Free amino acids ofHevea brasiliensis latex.Experientia 30:894–895Google Scholar
  10. Brzozowska-Hanower, J., Cretin, H., Hanower, P., Michel, P. 1979. Variations de pH entre compartiments vacuolaire et cytoplasmique au sein du latex d'Hevea brasiliensis. Influence saisonnière et action du traitement par l'ethrel, générateur d'ethylène. Répercussion sur la production et l'apparition d'encoches sèches.Physiol. Veg. 17:889–905Google Scholar
  11. Collowick, S.P., Womack, F.C. 1969. Binding of diffusible molecules: Rapid measurement by rate of dialysis.J. Biol. Chem. 244:774–776PubMedGoogle Scholar
  12. Coupe, M., Lambert, C. 1977. Absorption of citrate by the lutoids of latex, and rubber production by hevea.Phytochemistry 16:455–458Google Scholar
  13. Dell'Antone, P. 1979. Evidence for an ATP-driven “proton pump” in rate liver lysosomes by basic dye uptake.Biochem. Biophys. Res. Commun. 86:180–189PubMedGoogle Scholar
  14. Dickenson, P.B. 1969. Electron microscopical studies of the latex vessels ofHevea brasiliensis.J. Rubber Res. Inst. Malays. 21:543–559Google Scholar
  15. Elema, R.P., Michels, P.A.M., Konings, W.N. 1978. Response of 9-amino-acridine fluorescence to transmembrane pH gradient in chromatophores from rhodopseudomonas spheroïdes.Eur. J. Biochem. 92:381–387Google Scholar
  16. Hanower, P., Brzozowska, J., Niamien N'Goran, M. 1977. Absorption des acides aminés par les lutoïdes du latex d'Hevea brasiliensis.Physiol. Plant. 39:299–304Google Scholar
  17. Henning, R. 1975. pH gradient across the lysosomal membrane generated by selective cation permeability and Donnan equilibrium.Biochim. Biophys. Acta 401:307–316PubMedGoogle Scholar
  18. Hollemans, M., Donker-Koopman, W., Tager, J.M. 1980. A critical examination of the evidence for an Mg-ATP dependant proton pump in rat liver lysosomes.Biochim. Biophys. Acta 603:171–177PubMedGoogle Scholar
  19. Jacob, J.L. 1970. Particularité de la glycolyse et de sa régulation au sein du latex d'Hevea brasiliensis.Physiol. Veg. 83:395–411Google Scholar
  20. Jacob, J.L., Sontag, N. 1974. Purification et étude de la phosphatase acide lutoïdique du latex d'Hevea brasiliensis.Biochimie 56:1315PubMedGoogle Scholar
  21. Kell, B., John, P., Ferguson, S.J. 1978. The proton motive force in phosphorylating membrane vesicles fromParacocus denitrificans — magnitude, sites of generation and comparison with the phosphorylation potential.Biochem. J. 174:257–266PubMedGoogle Scholar
  22. Lambert, C. 1975. Influence de l'ATP sur le pH intralutoïdique et la pénétration du citrate dans les lutoïdes du latex d'Hevea brasiliensis.C.R. Acad. Sci. Paris, t. 281-D:1705–1708Google Scholar
  23. Lin, W., Wanger, G.J., Siegelman, H.W., Hind, G. 1977. Membrane bound ATPase of intact vacuoles and tonoplasts isolated from mature plant tissue.Biochim. Biophys. Acta 465:110–117PubMedGoogle Scholar
  24. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265–275PubMedGoogle Scholar
  25. Marin, B. 1980. Some evidence about the occurrence of a Mg-ATP-dependant proton pump in plant vacuo-lysosomal compartment.In: Plant Membrane Transport: Current Conceptual Issues. R.M. Spanswick, W.J. Lucas, J. Dainty, editors. pp. 435–436. Elsevier-North Holland Biochemical, AmsterdamGoogle Scholar
  26. Marin, B. 1981. Le fonctionnement du transporteur tonoplastique de l'acide citrique du latex d'Hevea brasiliensis: Relation avec l'activité Adenosine. Triphosphatase membranaire. Ph.D. Thesis. Université des Sciences et techniques du Languedoc. MontpellierGoogle Scholar
  27. Marin, B., Grignon. C. 1981. A computer-simulation of the mechanism of Citrate/H+ antiport at the tonoplast level in hevea latex.Can. J. Biochem. (Submitted)Google Scholar
  28. Marin, B. Smith, J.A.C., Lüttge, M. 1981. The electrochemical proton gradient and its influence on citrate uptake in tonoplast vesicles ofHevea brasiliensis. Planta (in press) Google Scholar
  29. McMullen, A.I. 1962. Particulate ribonucleoprotein components ofHevea brasiliensis latex.Biochem. J. 85:491–495PubMedGoogle Scholar
  30. Mitchell, P., Moyle, J. 1968. Proton translocation coupled to ATP hydrolysis in rat liver mitochondria.Eur. J. Biochem. 4:530–539Google Scholar
  31. Moreau, F., Jacob, J.L., Dupont, J., Lance, C. 1975. Electron transport in the membrane of lutoids from the latex ofHevea brasiliensis.Biochim. Biophys. Acta 396:116–124PubMedGoogle Scholar
  32. Padan, E., Rottenberg, H. 1973. Respiratory control and the proton electrochemical gradient in mitochondria.Eur. J. Biochem. 40:431–437Google Scholar
  33. Pujarniscle, S. 1968. Caractère lysosomal des lutoïdes du latex d'Hevea brasiliensis Müll Arg.Physiol. Veg. 6:27–46Google Scholar
  34. Pujarniscle, S. 1969. Etude de quelques facteurs intervenant sur la perméabilité et la stabilité de la membrane des lutoïdes d'Hevea brasiliensis.Physiol. Veg. 7:391–403Google Scholar
  35. Ramos, S., Schuldiner, S., Kaback, H.R. 1976. The electrochemical gradient of proton and its relationship to active transport inEscherichia coli membrane vesicles.Proc. Nat. Acad. Sci. USA 73:1892–1896PubMedGoogle Scholar
  36. Reijngoud, D.J., Oud, P.S., Kas, J., Tager, J.M. 1976a. Relationship between medium pH and that of the lysosomal matrix as studied by two independant methods.Biomembranes 448:290–302Google Scholar
  37. Reijngoud, D.J., Oud, P.S., Tager, J.M. 1976b. Effects of ionophores on the intralysosomal pH.Biomembranes 448:303–313Google Scholar
  38. Reijngoud, D.J., Tager, L.M. 1973. Measurement of intralysosomal pH.Biochim. Biophys. Acta 297:174–178PubMedGoogle Scholar
  39. Ribailler, D. 1972. Quelques aspects du rôle des lutoïdes dans la physiologie et l'écoulement du latex d'Hevea brasiliensis. Thèse Doc. Etat Sci. Nat. Abidjan, C.N.R.S.-AO-7716Google Scholar
  40. Ribailler, D., Jacob, J.L., d'Auzac, J. 1971. Sur certains caractères vacuolaires des lutoïdes du latex d'Hevea brasiliensis.Physiol. Veg. 9:423–437Google Scholar
  41. Rottenberg, H., Grunwald, T., Avron, M. 1972. Determination of pH in chloroplasts: I. Distribution of14C-methylamine.Eur. J. Biochem. 25:54–63PubMedGoogle Scholar
  42. Ruinen, J. 1950. Microscopy of the lutoids in hevea latex.Ann. Bogor. I:27–45Google Scholar
  43. Schneider, D.L. 1977. Membranous localization and properties of ATPase of rat liver lysosomes.J. Membrane Biol. 34:247–261Google Scholar
  44. Schneider, D.L. 1979. The acidification of rat liver lysosomesin vitro. A role for the membranous ATPase as a proton pump.Biochem. Biol. Res. Commun. 86:180–189Google Scholar
  45. Sorgato, M., Ferguson, S.J., Kell, D.B., John, P. 1978. The proton motive force in bovine heart submitochondrial particles; magnitude, site of generation and comparison with the phosphorylation potential.Biochem. J. 174:237–256PubMedGoogle Scholar
  46. Taysum, D.H. 1960. The establishment of a bacterial population in latex vessels during normal tapping.Proc. Nat. Rubber Res. Conf., Kuala-Lumpur., pp. 856–871Google Scholar
  47. Tupy, J., 1973. The activity of latex invertase and latex production inHevea brasiliensis Müll. Arg.Physiol. Veg. 11:633–641Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1982

Authors and Affiliations

  • Hervé Cretin
    • 1
  1. 1.Office de la Recherche Scientifique et Technique Outre-MerAbidjanIvory Coast

Personalised recommendations