Skip to main content
Log in

Some electrical properties of the membrane of the barnacle muscle fibers under internal perfusion

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Intracellular perfusion technique has been applied to the muscle fibers of the barnacle species,Balanus nubilus. In these fibers, generation and the form of the calcium spike was governed by the frequency of stimulation and intra- and extracellular calcium concentrations. Voltage-clamp experiments showed that the magnitude of the potassium outward current was controlled by the intracellular calcium concentration whose increase, nearly 103-fold, raised the resting membrane conductance and the outward potassium current. On the other hand, application of 10mm zinc ions inside the muscle fiber had no effect on either the resting potential or the outward potassium current but suppressed the early inward calcium current. Similarly, the inward calcium current was decreased by low concentration of sodium ions in the extracellular fluid only when its ionic strength was made low by substituting sucrose for the sodium salt. Measurement of outward current with the muscle fiber in calcium-free ASW solution and intracellularly perfused with several cationic solutions established the selectivity sequence TEA<Cs<Li<Tris<Rb<Na<K for the potassium channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, C.M., Bezanilla, F. 1974. Charge movement associated with the opening and closing of the activation gate of the Na channel.J. Gen. Physiol. 63:533

    Google Scholar 

  • Armstrong, C.M., Binstock, L. 1965. Anomalous rectification in the squid giant axon injected with tetraethylammonium chloride.J. Gen. Physiol. 48:859

    Google Scholar 

  • Barrett, E.F., Barrett, J.N. 1976. Separation of two voltage-sensitive potassium currents and demonstration of a tetrodotoxin-resistant calcium current in frog motoneurones.J. Physiol. (London) 255:737

    Google Scholar 

  • Begenisich, T., Lynch, C. 1974. Effects of internal divalent cations on voltage-clamped squid axons.J. Gen. Physiol. 63:675

    Google Scholar 

  • Blaustein, M.P., Goldman, D.E. 1968. The action of certain polyvalent cations on the voltage-clamped lobster axon.J. Gen. Physiol. 51:279

    Google Scholar 

  • Daniels, F., Alberty, R.A. 1955. Physical Chemistry. Asia Publishing House, Bombay, p. 467

    Google Scholar 

  • Feitknecht, W., Schindler, P. 1963. Solubility constants of metal oxides, metal hydroxides and metal hydroxide salts in aqueous solution.Pure Appl. Chem. 6:130

    Google Scholar 

  • Fulton, J.W., Swinehart, D.F. 1954. The equilibria of crystalline zinc hydroxide in dilute hydrochloric acid and sodium hydroxide at 25°C. The first and second acidic dissociation constants of zinc hydroxide.J. Am. Chem. Soc. 76:864

    Google Scholar 

  • Hagiwara, S. 1973. Calcium spike.In: Advances in Biophysics. M. Kotani, editor. Vol. 4, p. 71. University of Tokyo Press, Tokyo

    Google Scholar 

  • Hagiwara, S., Chichibu, S., Naka, K. 1964. The effects of various ions on resting and spike potentials of barnacle muscle fibers.J. Gen. Physiol. 48:163

    Google Scholar 

  • Hagiwara, S., Fukuda, J., Eaton, D.C. 1974. Membrane currents carried by Ca, Sr, and Ba in barnacle muscle fiber during voltage-clamp.J. Gen. Physiol. 63:564

    Google Scholar 

  • Hagiwara, S., Gruener, R., Hayshi, H., Sakata, H., Grinell, A.D. 1968. Effect of external and internal pH changes on K and Cl conductances in the muscle fiber membrane of a giant barnacle.J. Gen. Physiol. 52:773

    Google Scholar 

  • Hagiwara, S., Hayashi, H., Takahashi, K. 1969. Calcium and potassium currents of the membrane of a barnacle muscle fiber in relation to the calcium spike.J. Physiol. (London) 205:115

    Google Scholar 

  • Hagiwara, S., Naka, K. 1964. The initiation of spike potential in barnacle muscle fibers under low intracellular Ca2+.J. Gen. Physiol. 48:141

    Google Scholar 

  • Hagiwara, S., Nakajima, S. 1966a. Differences in Na and Ca spikes as examined by application of tetrodotoxin, procaine and manganese ions.J. Gen. Physiol. 49:793

    Google Scholar 

  • Hagiwara, S., Nakajima, S. 1966b. Effects of the intracellular Ca ion concentration upon excitability of the muscle fiber membrane of a barnacle.J. Gen. Physiol. 49:807

    Google Scholar 

  • Hagiwara, S., Takahashi, K. 1967. Surface density of calcium ions and calcium spikes in the barnacle muscle membrane.J. Gen. Physiol. 50:583

    Google Scholar 

  • Hille, B. 1968. Charges and potentials at the nerve surface. Divalent ions and pH.J. Gen. Physiol. 51:221

    Google Scholar 

  • Hille, B., Woodhull, A.M., Shapiro, B.I. 1975. Negative surface charge near sodium channels of nerve: Divalent ions, monovalent ions and pH.Phil. Trans. R. Soc. London B 270:301

    Google Scholar 

  • Holloway, J.H., Reilley, C.N. 1960. Metal chelate stability constants of aminopolycarboxylate ligands.Anal. Chem. 32:249

    Google Scholar 

  • Isaacson, A. 1961. The effects of zinc on responses of frog skeletal muscle. Ph. D. Thesis. New York University. pp. 16–17.

  • Kao, C.Y., Stanfield, P.R. 1970. Action of some cations on the electrical properties and mechanical threshold of frog sartorius muscle fibers.J. Gen. Physiol. 55:620

    Google Scholar 

  • Keynes, R.D., Rojas, E., Taylor, R.E., Vergara, J. 1973. Calcium and potassium systems of a giant barnacle muscle fibre under membrane potential control.J. Physiol. (London) 229:409

    Google Scholar 

  • Krnjevic, K., Lisiewicz, A. 1972. Injections of calcium ions into spinal motoneurones.J. Physiol. (London) 225:363

    Google Scholar 

  • Krnjevic, K., Paul, E., Werman, R. 1975. Evidence, for Ca2+-activated K+ conductance in cat spinal motoneurones from intracellular EGTA injections.Can. J. Physiol. Pharmacol. 53:1214

    Google Scholar 

  • Laitinen, H.A. 1960. Chemical Analysis. McGraw-Hill, New York, p. 20

    Google Scholar 

  • Lakshminarayanaiah, N. 1969. Transport Phenomena in Membranes. Academic Press, New York, pp. 84–89

    Google Scholar 

  • Lakshminarayanaiah, N. 1974. Potentiometric estimation of charges in barnacle muscle fibers under internal perfusion.J. Membrane Biol. 16:145

    Google Scholar 

  • Lakshminarayanaiah, N., Rojas, E. 1973. Effects of anions and cations on the resting membrane potential of internally perfused barnacle muscle fibres.J. Physiol. (London) 233:613

    Google Scholar 

  • Lakshminarayanaiah, N., Rojas, E. 1975. Effects of pH and ionic strength on the potassium system in the internally perfused giant barnacle muscle fibre.Pfluegers Arch. 358:349

    Google Scholar 

  • Lew, V.L. 1970. Effect of intracellular calcium on the potassium permeability of the human red cell.J. Physiol (London) 206:35P

    Google Scholar 

  • Meech, R.W. 1972. Intracellular calcium injection causes increased potassium conductance inAplysia nerve cells.Comp. Biochem. Physiol. 42:493

    Google Scholar 

  • Meech, R.W. 1974. The sensitivity ofHelix aspersa neurones to injected calcium ions.J. Physiol. (London) 237:259

    Google Scholar 

  • Meech, R.W., Standen, N.B. 1975. Potassium activation inHelix aspersa neurones under voltage-clamp. A component mediated by calcium influx.J. Physiol. (London) 249:211

    Google Scholar 

  • Papahadjopoulos, D., Bangham, A.D. 1966. Biophysical properties of phospholipids. II. Permeability of phosphatidylserine liquid crystals to univalent ions.Biochim. Biophys. Acta 126:185

    Google Scholar 

  • Portzehl, H., Caldwell, P.C., Rüegg, J.C. 1964. The dependence of contraction and relaxation of muscle fibres from crabMaia Squinado on the internal concentration of free calcium ions.Biochim. Biophys. Acta 79:581

    Google Scholar 

  • Romero, P.J., Whittam, R. 1971. The control of internal calcium of membrane permeability to sodium and potassium.J. Physiol (London) 214:481

    Google Scholar 

  • Schindler, P., Althaus, H., Feitknecht, W. 1964. Löslichkeitsprodukte von Metalloxiden und- hydroxiden.Helv. Chim. Acta 47:982

    Google Scholar 

  • Schoffeniels, E., 1967. Cellular Aspects of Membrane Permeability. Pergamon Press, London

    Google Scholar 

  • Selverston, A. 1967. Structure and function of the transverse tubular system in crustacean muscle fibers.Am. Zool. 7:515

    Google Scholar 

  • Stanfield, P.R. 1975. The effect of zinc ions on the gating of the delayed potassium conductance of frog sartorius muscle.J. Physiol. (London) 251:711

    Google Scholar 

  • Tasaki, I., Hagiwara, S. 1957. Demonstration of two stable potential states in the squid giant axon under tetraethylammonium chloride.J. Gen. Physiol. 40:859

    Google Scholar 

  • Whittam, R., 1968. Control of membrane permeability in red blood cells.Nature (London) 219:610

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murayama, K., Lakshminarayanaiah, N. Some electrical properties of the membrane of the barnacle muscle fibers under internal perfusion. J. Membrain Biol. 35, 257–283 (1977). https://doi.org/10.1007/BF01869953

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869953

Keywords

Navigation