The Journal of Membrane Biology

, Volume 35, Issue 1, pp 125–136 | Cite as

ATPase and phosphatase activities from human red cell membranes: II. The effects of phospholipases on Ca2+-dependent enzymic activities

  • D. E. Richards
  • J. C. Vidal
  • P. J. Garrahan
  • A. F. Rega


Treatment of human red cell membranes with pure phospholipase A2 results in a progressive inactivation of both Ca2+-dependent and (Ca2++K+)-dependent ATPase and phosphatase activities. When phospholipase C replaces phospholipase A2, Ca2+-dependent ATPase activity and Ca2+-dependent phosphorylation of red cell membranes are lost, while Ca2+-dependent phosphatase activity is enhanced and its apparent affinity for Ca2+ is increased about 20-fold. Activation of Ca2+-dependent phosphatase following phospholipase C treatment was not observed in sarcoplasmic reticulum preparation. Phospholipase C increases the sensitivity of the phosphatase to N-ethylmaleimide but has little effect on the kinetic parameters relating the phosphatase activity to substrate and cofactors, suggesting that no extensive structural disarrangement of the Ca2+-ATPase system has occurred after incubation with phospholipase C.


Human Physiology Kinetic Parameter ATPase Activity Phosphatase Activity Sarcoplasmic Reticulum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bohner, L. S., Soto, E. F., Cohan, T. 1965. Quantitative analysis of phospholipids by thin-layer chromatography.J. Chromatogr. 17:513Google Scholar
  2. Coleman, R., Bramley, T. A.. 1975. Hydrolysis of erythrocyte membrane phospholipids by a preparation of phospholipase C fromClostridium whelchii. Deactivation of Ca2+, Mg2+-ATPase and its reactivation by added lipids.Biochim. Biophys. Acta 382:565Google Scholar
  3. Garrahan, P. J., Pouchan, M. I., Rega, A. F. 1969. Potassium activated phosphatase from human red cells. The mechanism of potassium activation.J. Physiol. (London) 202:777Google Scholar
  4. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. 1951. Protein meassurement with the Folin phenol reagent.J. Biol. Chem. 193:265Google Scholar
  5. Martonosi, A., Feretos, R. 1964. Sarcoplasmic reticulum: I. The uptake of Ca++ by sarcoplasmic reticulum fragments.J. Biol. Chem. 239:648Google Scholar
  6. Nieuwenhuizen, W., Kunze, H., Hass, G. H. de 1974. Phospholipase A2 (phosphatide acylhydrolase, EC3 1.1.4) from porcine pancreas.In: Methods in Enzymology. S. Fleischer and L. Paker, editors, vol. XXXII partB, p. 147. Academic Press, New YorkGoogle Scholar
  7. Reed, C. F., Swisher, S. N., Marinetti, G. V., Eden, E. G. 1960 Studies of the lipids of the erythrocyte. I. Quantitative analysis of the lipids of normal human red blood cells,J. Lab. Clin. Med. 56:281Google Scholar
  8. Rega, A. F., Garrahan, P. J. 1975. Calcium ion-dependent phosphorylation of human erythrocyte membranes.J. Membrane Biol. 22:313Google Scholar
  9. Rega, A. F., Richards, E. E., Garrahan, P. J. 1973. Calcium ion-dependentp-nitrophenyl phosphate phosphatase activity and calcium ion-dependent adenosine triphosphatase activity from human erythrocyte membranes.Biochem. J. 136:185Google Scholar
  10. Richards, D. E., Rega, A. F., Garrahan, P. J. 1977. ATPase and phosphatase activities from human red cell membranes, I. The effects of N-ethylmaleimide.J. Membrane Biol. 35:113Google Scholar
  11. Roelofsen, B., Deenen, L. L. M. van 1973. Lipid requirement of membrane-bound ATPase. Studies on human erythrocyte ghosts.Eur. J. Biochem. 40:245Google Scholar
  12. Schatzmann, H. J. 1966. ATP-dependent Ca++ extrusion from human red cells.Experientia 22:364Google Scholar
  13. Schatzmann, H. J. 1975. Active calcium transport and Ca++-activated ATPase in human red cells.Curr. Top. Membr. Transp. 6:125Google Scholar
  14. Wheeler, K. P., Whittam, R. 1970. The involvement of phosphatidylserine in adenosinetriphosphatase activity of the sodium pump.J. Physiol. (London) 207:303Google Scholar
  15. Wolf, H. U. 1973. Divalent metal ion buffers with low pH-sensitivity.Experientia 29:241Google Scholar
  16. Zwaal, R. F. A., Roelofsen, B. 1974. Phospholipase C (phosphatidylcholine choline phosphohydrolase, EC3.1.4.3) fromBacillus cereus.In: Methods in Enzymology. S. Fleischer and L. Paker, editors, Vol. XXXII partB, p. 154. Academic Press, New YorkGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1977

Authors and Affiliations

  • D. E. Richards
    • 1
  • J. C. Vidal
    • 1
  • P. J. Garrahan
    • 1
  • A. F. Rega
    • 1
  1. 1.Departamento de Química Biológica, Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations