Skip to main content
Log in

Mechanism of Ca2+-dependent selective rapid K+-transport induced by propranolol in red cells

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Passive Ca2+ influx is gradually enhanced by 0.5 to 5mm propranolol in fresh and phosphate ester-depleted human red cells. In fresh cells the active Ca2+ efflux tends to counteract Ca2+ uptake. Membrane hyperpolarization, induced by the K+ transport that accompanies Ca2+ uptake, further enhances the rate of Ca2 uptake. The dissociated, positively charged form of propranolol seems to be crucial in the increase of passive Ca2+ influx caused by the drug. The effect can be attributed to the release of structural Ca2+ from the membrane (lipids).

The release of structural Ca2+ promotes the formation of the selectively K+-permeable membrane structure as well. The transitions of lipid structure responsible for the opening of the passive Ca2+ and K+ pathways, however, are not identical. The opening of the K+ pathways is prevented by certain highly lipid-soluble substances (chlorobutanol, heptanol, oligomycin, etc.), whereas the formation of the Ca2+ pathways is unaffected. Passive K+ transport is inhibited by high propranolol concentrations (more intensively at alkaline pH), whereas Ca2+ transport is promoted. A further difference between the passive K+ and Ca2+ pathways is that SH-proteins also seem to be involved in the formation of the K+ pathways, whereas they do not play a specific role in the opening of the passive Ca2+ channels. The additional Ca2+ binding that triggers the formation of the K+ pathways also seems to occur in the protein area of the inner membrane surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blum, R.M., Hoffman, J.F. 1972. Ca-induced K-transport in human red cells: Localization of Ca-sensitive site to the inside of the membrane.Biochem. Biophys. Res. Commun. 46:1146

    Google Scholar 

  • Davis, W., Vincenzi, F.F. 1971. Ca-ATPase activation and Na, K-ATPase inhibition as a function of calcium concentration in human red cell membrane.Life Sci. 10:401

    Google Scholar 

  • Ekman, A., Manninen, V., Salminen, S. 1969. Ion movements in red cell treated with propranolol.Acta Physiol. Scand. 75:333

    Google Scholar 

  • Ferreira, H.G., Lew, V.L. 1976. Use of ionophore A23187 to measure Ca buffering and activation of the Ca pump by internal Ca.Nature (London) 259:47

    Google Scholar 

  • Folch, J., Lees, M., Stanley, G.H. 1957. A simple method for the isolation and purification of total lipids from animal tissues.J. Biol. Chem. 226:497

    Google Scholar 

  • Forstner, J., Manery, J.F. 1971. Calcium binding by human erythrocyte membranes.Biochem. J. 124:563

    Google Scholar 

  • Gárdos, G. 1958. The function of calcium in the potassium permeability of human erythrocytes.Biochim. Biophys. Acta 30:653

    Google Scholar 

  • Gárdos, G., Szász, I., Sarkadi, B. 1975. Mechanism of Ca-dependent K-transport in human red cells.In: Biomembranes: Structure and Function. G. Gárdos and I. Szász, editors.FEBS Proceedings, Vol. 35, p. 167. North-Holland Publishing Co., Amsterdam

    Google Scholar 

  • Glynn, I.M., Warner, A.E. 1972. Nature of the calcium dependent potassium leak induced by (+)-propranolol, and its possible relevance to the drug's antiarrhytmic effect.Brit. J. Pharmacol. 44:271

    Google Scholar 

  • Gutknecht, J., Tosteson, D.C. 1970. Ion permeability of thin lipid membranes. Effects ofn-alkyl alcohols, polyvalent cations and a secondary amine.J. Gen. Physiol. 55:350

    Google Scholar 

  • Hoffman, J.F., Knauf, P.A. 1973. The mechanism of the increased K-transport induced by Ca in human red blood cells.In: Erythrocytes, Thrombocytes, Leukocytes. E. Gerlach, K. Moser, E. Deutsch and W. Wilmanns, editors. p. 66. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  • Kimmich, G.A., Randles, J., Brand, J.S. 1975. Assay of picomole amounts of ATP, ADP and AMP using the luciferase enzyme system.Anal. Biochem. 69:187

    Google Scholar 

  • Kwant, W.O., Seeman, P. 1969. The displacement of membrane calcium by a local anesthetic (chlorpromazine).Biochim. Biophys. Acta 193:338

    Google Scholar 

  • Lassen, U.V., Pape, L., Vestergaard-Bogind, B. 1973. Membrane potential ofAmphiuma red cells: Effect of calcium.In: Erythrocytes, Thrombocytes, Leukocytes. E. Gerlach, K. Moser, E. Deutsch and W. Wilmanns, editors. p. 33. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  • Lew, V.L., Beaugé, L. 1977. Passive cation fluxes in red cells.In: Transport across Biological Membranes. G. Giebisch, D.C. Tosteson and H.H. Ussing, editors. Springer Verlag, New York (in press)

    Google Scholar 

  • Lew, V.L., Ferreira, H.G. 1976. Variable Ca sensitivity of a K-selective channel in intact red cell membranes.Nature (London) 263:336

    Google Scholar 

  • Long, C., Mouat, B. 1971. The binding of calcium ions by erythrocytes and “ghosts”-cell membranes.Biochem. J. 123:829

    Google Scholar 

  • Lovrien, R., Tisel, W., Pesheck, P. 1975. Stoichiometry of compounds bound to human erythrocytes in relation to morphology.J. Biol. Chem. 250:3136

    Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265

    Google Scholar 

  • Manery, J.F. 1966. Effects of Ca ions on membranes.Fed. Proc. 25:1804

    Google Scholar 

  • Manninen, V. 1970. Movements of sodium and potassium ions and their tracers in propranolol treated red cells and diaphragm muscle.Acta Physiol. Scand. Suppl. 355:1

    Google Scholar 

  • Nayler, W.G. 1966. The effect of pronethalol and propranolol on lipid facilitated transport of calcium ions.J. Pharmacol. Exp. Ther. 153:479

    Google Scholar 

  • Paterson, S.J., Butler, K.W., Huang, P., Labelle, J., Smith, I.C.P., Schneider, H. 1972. The effects of alcohols on lipid bilayers: A spin label study.Biochim. Biophys. Acta 266:597

    Google Scholar 

  • Porzig, H. 1975. Comparative study on the effects of propranolol and tetracaine on cation movements in resealed human red cell ghosts.J. Physiol. (London) 249:27

    Google Scholar 

  • Rhodes, D.N. 1955. Micro-determination of phosphorus.Nature (London) 176:215

    Google Scholar 

  • Sarkadi, B., Szász, I., Gárdos, G. 1976. The use of ionophores for rapid loading of human red cells with radioactive cations for cation-pump studies.J. Membrane Biol. 26:357

    Google Scholar 

  • Sarkadi, B., Szász, I., Gerlóczy, A., Gárdos, G. 1977. Transport parameters and stoichiometry of active Ca ion extrusion in intact human red cells.Biochim. Biophys. Acta 464:93

    Google Scholar 

  • Sato, T., Fujii, T. 1974. Binding of calcium and magnesium ions to human erythrocyte membranes. Chem. Pharm. Bull. (Tokyo)22:368

    Google Scholar 

  • Schatzmann, H.J. 1973. Dependence on calcium concentration and stoichiometry of the calcium pump in human red cells.J. Physiol. (London) 235:551

    Google Scholar 

  • Schubert, A., Sarkadi, B. 1977. Kinetic studies on the calcium-dependent potassium transport in human red blood cells.Acta Biochim. Biophys. Acad. Sci. Hung. (in press)

  • Seeman, P. 1972. The membrane actions of anesthetics and tranquilizers.Pharmacol. Rev. 24:583

    Google Scholar 

  • Sheetz, M.P., Singer, S.J. 1974. Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions.Proc. Nat. Acad. Sci. USA 71:4457

    Google Scholar 

  • Szász, I., Gárdos, G. 1974. Mechanism of various drug effects on the Ca2+-dependent K+-efflux from human red blood cells.FEBS Lett. 44:213

    Google Scholar 

  • Szász, I., Teitel, P., Gárdos, G. 1970. Structure and function of erythrocytes. V. Differences in the Ca2+-dependence of the ATP requiring functions of erythrocytes.Acta Biochim. Biophys. Acad. Sci. Hung. 5:409

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szász, I., Sarkadi, B. & Gárdos, G. Mechanism of Ca2+-dependent selective rapid K+-transport induced by propranolol in red cells. J. Membrain Biol. 35, 75–93 (1977). https://doi.org/10.1007/BF01869941

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869941

Keywords

Navigation