Skip to main content
Log in

Intracellular compartmentation of Na+, K+ and Cl in the Ehrlich ascites tumor cell: Correlation with the membrane potential

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The intracellular distribution of Na+, K+, Cl and water has been studied in the Ehrlich ascites tumor cell. Comparison of the ion and water contents of whole cells with those of cells exposed to La3+ and mechanical stress indicated that La3+ treatment results in selective damage to the cell membrane and permits evaluation of cytoplasmic and nuclear ion concentrations. The results show that Na+ is sequestered within the nucleus, while K+ and Cl are more highly concentrated in the cell cytoplasm. Reduction of the [Na+] of the incubation medium by replacement with K+ results in reduced cytoplasmic [Na+], increased [Cl] and no change in [K+]. Nuclear concentrations of these ions are virtually insensitive to the cation composition of the medium. Concomitant measurements of the membrane potential were made. The potential in control cells was −13.7 mV. Reduction of [Na+] in the medium caused significant depolarization. The measured potential is describable by the Cl equilibrium potential and can be accounted for in terms of cation distributions and permeabilities. The energetic implications of the intracellular compartmentation of ions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aull, F. 1967. Measurement of the electrical potential difference across the membrane of the Ehrlich mouse ascites tumor cell.J. Cell. Physiol. 69:21

    Google Scholar 

  • Barry, P.H., Diamond, J.M. 1970. Junction potentials, electrode standard potentials, and other problems in interpreting electrical properties of membranes.J. Membrane Biol. 3:93

    Google Scholar 

  • Christensen, H.N., Riggs, T.R. 1952. Concentrative uptake of amino acids by the Ehrlich mouse ascites carcinoma cell.J. Biol. Chem. 194:57

    Google Scholar 

  • Christensen, H.N., Riggs, T.R., Fischer, H., Palatine, J.M. 1952. Amino acid concentration by a free cell neoplasm: Relations among amino acids.J. Biol. Chem. 198:1

    Google Scholar 

  • de Cespedes, C., Christensen, H.N. 1974. Complexity in valinomycin effects on amino acid transport.Biochim. Biophys. Acta 339:139

    Google Scholar 

  • Eddy, A.A. 1968a. A net gain of sodium ions and a net loss of potassium ions accompanying the uptake of glycine by mouse ascites-tumour cells in the presence of sodium cyanide.Biochem. J. 108:195

    Google Scholar 

  • Eddy, A.A. 1968b. The effects of varying the cellular and extracellular concentrations of sodium and potassium ions on the uptake of glycine by mouse ascites-tumour cells in the presence and absence of sodium cyanide.Biochem. J. 108:489

    Google Scholar 

  • Eddy, A.A., Mulcahy, M.F., Thomson, P.J. 1967. The effect of sodium ions, potassium ions on glycine uptake by mouse ascites-tumor cells in the presence and absence of selected metabolic inhibitors.Biochem. J. 103:863

    Google Scholar 

  • Goldman, D.E. 1943. Potential, impedance and rectification in membranes.J. Gen. Physiol. 27:37

    Google Scholar 

  • Grobecker, H., Kromphardt, H., Mariani, H., Heinz, E. 1963. Untersuchungen über den Elektrolythaushalt der Ehrlich Ascites Tumorzelle.Biochem. Z. 337:462

    Google Scholar 

  • Heinz, E., Geck, Pietrzyk, C. 1975. Driving forces of amino acid transport in animal cells.Ann. N. Y. Acad. Sci. 264:428

    Google Scholar 

  • Hempling, H.G. 1958. Potassium and sodium movements in the Ehrlich mouse ascites tumor cell.J. Gen. Physiol. 41:565

    Google Scholar 

  • Hempling, H.G. 1962. Potassium transport in the Ehrlich mouse ascites tumor cell: Evidence for auto-inhibition by external potassium.J. Cell Comp. Physiol. 60:181

    Google Scholar 

  • Hempling, H.G. 1972. The ascites tumor cell.In: Transport and Accumulation in Biological Systems. E.J. Harris, editor. p. 271. Butterworth & Co. Ltd., London

    Google Scholar 

  • Hempling, H., Kromphardt, H. 1965. On the permeability of the ascites tumor cell to chloride.Fed. Proc. 24:709

    Google Scholar 

  • Hodgkin, A.L., Katz, B. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid.J. Physiol. (London) 108:37

    Google Scholar 

  • Jacquez, J.A., Shafer, J.A. 1969. Na+ and K+ electrochemical potential gradients and the transport of α-aminoisobutyric acid in Ehrlich ascites tumor cells.Biochim. Biophys. Acta 193:368

    Google Scholar 

  • Johnstone, B.M. 1959. Microelectrode penetrations of ascites tumor cells.Nature (London) 183:411

    Google Scholar 

  • Johnstone, R.M. 1974. Role of ATP on the initial rate of amino acid uptake in Ehrlich ascites cells.Biochim. Biophys. Acta 356:319

    Google Scholar 

  • Kromphardt, H., Grobecker, H., Ring, K., Heinz, E. 1963. Über den Einfluss von Alkali-Ionen auf den Glycintransport in Ehrlich-Ascites-Tumorzellen.Biochim. Biophys. Acta 74:549

    Google Scholar 

  • Laris, P.C., Pershadisingh, H.A., Johnstone, R.M. 1976. Monitoring membrane potentials in Ehrlich ascites tumor cells by means of a fluorescent dye.Biochim. Biophys. Acta 436:475

    Google Scholar 

  • Lassen, U.V., Nielsen, A.-M.T., Pape, L., Simonsen, L.O. 1971. The membrane potential of Ehrlich ascites tumor cells.J. Membrane Biol. 6:269

    Google Scholar 

  • Levinson, C., Mikiten, T.M., Smith, T.C. 1972. Lanthanum-induced alterations in cellular electrolytes and membrane potential in Ehrlich ascites tumor cells.J. Cell. Physiol. 79:299

    Google Scholar 

  • Levinson, C., Smith, T.C., Mikiten, T.M. 1972. Lanthanum-induced alterations of cellular electrolytes in Ehrlich ascites tumor cells: A new view.J. Cell. Physiol. 80:149

    Google Scholar 

  • Maizels, M., Remington, M., Truscoe, R. 1958. The effects of certain physical factors and of the cardiac glycosides on sodium transfer by mouse ascites tumor cells.J. Physiol. (London) 140:61

    Google Scholar 

  • Mills, B., Tupper, J.T. 1975. Cation permeability and ouabain-insensitive cation flux in the Ehrlich ascites tumor cells.J. Membrane Biol. 20:75

    Google Scholar 

  • Moore, W.J. 1965. Physical Chemistry. Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Pershadsingh, H.A., Laris, P.C. 1976. Influences of calcium and (Dl)-propranalol on the membrane potential of Ehrlich ascites tumor cells.Fed. Proc. 35:605

    Google Scholar 

  • Pfister, H. 1969. Average activity coefficient of KCl in cytoplasm fractions from calf hepatocytes.Z. Naturforsch. 25b:1130

    Google Scholar 

  • Pietrzyk, C., Heinz, E. 1972. Some observations on the non-homogeneous distribution inside the Ehrlich cell.In: Na-linked Transport of Organic Solutes. E. Heinz, editor. p. 84. Springer Verlag, Heidelberg

    Google Scholar 

  • Pietrzyk, C., Heinz, E. 1974. The sequestration of Na+, K+ and Cl in the cellular nucleus and its energetic consequences for the gradient hypothesis of amino acid transport in Ehrlich cells.Biochim. Biophys. Acta 352:394

    Google Scholar 

  • Potashner, S.J., Johnstone, R.M. 1971. Cation gradients, ATP and amino acid accumulation in Ehrlich ascites cells.Biochim. Biophys. Acta 233:91

    Google Scholar 

  • Riggs, T.R., Walker, L.M., Christensen, H.N. 1958. Potassium migration and amino acid transport.J. Biol. Chem. 233:1479

    Google Scholar 

  • Romero, P.J., Whittam, R. 1971. The control by internal calcium of membrane permeability to sodium and potassium.J. Physiol. (London) 214:481

    Google Scholar 

  • Schultz, S.G., Curran, P.F. 1970. Coupled transport of sodium and organic solutes.Physiol. Rev. 50:637

    Google Scholar 

  • Shafer, J.A., Heinz, E. 1971. The effect of reversal of Na+ and K+ electrochemical potential gradients on the active transport of amino acids in Ehrlich ascites tumor cells.Biochim. Biophys. Acta 249:15

    Google Scholar 

  • Shafer, J.A., Jacquez, J.A. 1967. Change in Na+ uptake during amino acid transport.Biochim. Biophys. Acta 135:1081

    Google Scholar 

  • Simons, T.J.B. 1976. The preparation of human red cell ghosts containing calcium buffers.J. Physiol. (London) 256:209

    Google Scholar 

  • Simonsen, L.O., Nielsen, A.-M.T. 1971. Exchangeability of chloride in Ehrlich ascites tumor cells.Biochim. Biophys. Acta 241:522

    Google Scholar 

  • Smith, T.C. 1976. The effect of lanthanum on electrophoretic mobility and passive cation movements of the Ehrlich ascites tumor cell.J. Cell. Physiol. 84:47

    Google Scholar 

  • Smith, T.C., Levinson, C. 1975. Direct measurement of the membrane potential of Ehrlich ascites tumor cells: Lack of effect of valinomycin and ouabain.J. Membrane Biol. 23:349

    Google Scholar 

  • Smith, T.C., Mikiten, T.M., Levinson, C. 1972. The effect of multivalent cations on the membrane potential of the Ehrlich ascites tumor cell.J. Cell. Physiol. 79:117

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, T.C., Adams, R. Intracellular compartmentation of Na+, K+ and Cl in the Ehrlich ascites tumor cell: Correlation with the membrane potential. J. Membrain Biol. 35, 57–74 (1977). https://doi.org/10.1007/BF01869940

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869940

Keywords

Navigation