The Journal of Membrane Biology

, Volume 11, Issue 1, pp 99–115 | Cite as

Barriers to sodium movement across frog skin

  • J. H. Moreno
  • I. L. Reisin
  • E. Rodríguez Boulan
  • C. A. Rotunno
  • M. Cereijido
Article

Summary

The aim of this paper is to obtain information on the number, nature and location of the barriers to Na movement across the frog skin, and on the size and location of the Na-pool that might be contained between these barriers. On the basis that Na penetrates passively across an outer barrier, and is actively extruded across an inner barrier which is impermeable to passive movements of Na, we expected to detect at least the Na-pool of a single cell layer containing some 10−8 moles per cm2 of epithelium (i.e., in a cell layer 5 μ thick and with 21mm Na). Yet no Na-pool with these characteristics was found. The method employed could have detected a Na-pool at least an order of magnitude smaller than the one expected. It is concluded that either a Na-pool does not exist (except for the Na bound to the mechanisms operating the translocation), or else that the Na-pool is contained between barriers with different characteristics than the ones assumed above. In the first case, Na transportacross the epithelium would consist of a translocation across a single asymmetrical functional “barrier”. In the second case, the experimental results would require that ouabain either directly (by inhibiting an active step) or indirectly (through a mediated decrease of the Na permeability of the outer barrier) prevents Na penetration at the outer border.

Keywords

Sodium Single Cell Human Physiology Cell Layer Ouabain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aceves, J., Erlij, D. 1971. Sodium transport across the isolated epithelium of the frog skin.J. Physiol. 212: 195.PubMedGoogle Scholar
  2. Andersen, B., Zerahn, K. 1963. Method for non-destructive determination of sodium transport pool in frog skin with radio-sodium.Acta Physiol. Scand. 59: 319.PubMedGoogle Scholar
  3. Biber, T. U. L. 1971. Effect of changes in transepithelial transport on the uptake of sodium across the outer surface of the frog skin.J. Gen. Physiol. 58: 131.PubMedGoogle Scholar
  4. Biber, T. U. L., Chez, R. A., Curran, P. F. 1966. Na transport across frog skin at low external Na concentrations.J. Gen. Physiol. 49: 1161.PubMedGoogle Scholar
  5. Biber, T. U. L., Cruz, L. J., Curran, P. F. 1972. Sodium influx at the outer surface of frog skin. Evaluation of different extracellular markers.J. Membrane Biol. 7: 365.Google Scholar
  6. Biber, T. U. L., Curran, P. F. 1970. Direct measurement of uptake of sodium at the outer surface of the frog skin.J. Gen. Physiol. 56: 83.PubMedGoogle Scholar
  7. Cereijido, M., Curran, P. F. 1965. Intracellular electrical potentials in frog skin.J. Gen. Physiol. 48: 543.PubMedGoogle Scholar
  8. Cereijido, M., Herrera, F. C., Flanigan, W. J., Curran, P. F. 1964. The influence of Na concentration on Na transport across frog skin.J. Gen. Physiol. 47: 879.PubMedGoogle Scholar
  9. Cereijido, M., Moreno, J. H., Rodríguez Boulan, E., Rotunno, C. A. 1972. On the evaluation of fluxes across the outer border of the epithelium.In: Role of Membranes in Secretory Processes. L. Bolis, editor. North Holland Publishing Co. (In press).Google Scholar
  10. Cereijido, M., Reisin, I., Rotunno, C. A. 1968. The effect of sodium concentration on the content and distribution of sodium in the frog skin.J. Physiol. 196: 237.PubMedGoogle Scholar
  11. Cereijido, M., Rotunno, C. A. 1967. Transport and distribution of sodium across frog skin.J. Physiol. 190: 481.PubMedGoogle Scholar
  12. Cereijido, M., Rotunno, C. A. 1968. Fluxes and distribution of sodium in frog skin:a new model.J. Gen. Physiol. 51: 280s.Google Scholar
  13. Cereijido, M., Rotunno, C. A. 1971. The effect of antidiuretic hormone on Na movement across frog skin.J. Physiol. 212: 119.Google Scholar
  14. Curran, P. F., Herrera, F. C., Flanigan, W. J. 1963. The effect of Ca and antidiuretic hormone on Na transport across frog skin. II. Sites and mechanisms of action.J. Gen. Physiol. 46: 1011.PubMedGoogle Scholar
  15. Dainty, J., House, C. R. 1966. Unstirred layers in frog skin.J. Physiol. 182: 66.PubMedGoogle Scholar
  16. Dörge, A., Nagel, W. 1970. Effect of amiloride on sodium transport in frog skin. II. Sodium transport pool and unidirectional fluxes.Pflüg. Arch. Ges. Physiol. 321: 91.Google Scholar
  17. Edzes, H. T., Rupprecht, A., Berendsen, H. J. C. 1972. Observation of quadrupolar NMR signal of Li and23Na in hydrated oriented DNA.Biochem. Biophys. Res. Commun. 46: 790.PubMedGoogle Scholar
  18. Eigler, J., Crabbé, J. 1969. Effects of diuretics on active sodium transport in amphibian membranes.In: Renal Transport and Diuretics. K. Thurau and H. Jahrmärker, editors. p. 195. Springer-Verlag, Berlin.Google Scholar
  19. Farquhar, M. G., Palade, G. E. 1966. Adenosine triphosphatase in amphibian epidermis.J. Cell. Biol. 30: 359.PubMedGoogle Scholar
  20. Finn, A. L., Rockoff, M. L. 1971. The kinetics of sodium transport in the toad bladder. I. Determination of the transport pool.J. Gen. Physiol. 57: 326.PubMedGoogle Scholar
  21. Gatzy, J. T., Berndt, W. O. 1968. Isolated epithelial cells of the toad bladder: Their preparation, oxygen consumption and electrolyte content.J. Gen. Physiol. 51: 770PubMedGoogle Scholar
  22. Gebhardt, U., Fuchs, W., Lindemann, B. 1972. Resistance response of frog skin to brief and long lasting changes of (Na)0 and (K)0.In: Role of Membranes in Secretory Processes. L. Bolis, editor. North Holland Publishing Co. (In press).Google Scholar
  23. Grigera, J. R., Cereijido, M. 1971. The state of water in the outer barrier of the isolated frog skin.J. Membrane Biol. 4: 148.Google Scholar
  24. Herrera, F. C. 1968. Action of ouabain on bioelectric properties and ion content in toad urinary bladder.Amer. J. Physiol. 215: 183.PubMedGoogle Scholar
  25. Hoshiko, T., Ussing, H. H. 1960. The kinetics of Na24 flux across amphibian skin and bladder.Acta Physiol. Scand. 49: 74.PubMedGoogle Scholar
  26. Kidder, G. W., Cereijido, M., Curran, P. F. 1964. Transient changes in electrical potential differences across frog skin.Amer. J. Physiol. 207: 935.PubMedGoogle Scholar
  27. Kirschner, L. B. 1955. On the mechanism of active sodium transport across the frog skin.J. Cell. Comp. Physiol. 45: 61.Google Scholar
  28. Koefoed-Johnsen, U. 1957. The effect ofg-strophantim (ouabain) on the active transport of sodium through the isolated frog skin.Acta Physiol. Scand. 42: 145 (suppl.).Google Scholar
  29. Koefoed-Johnsen, U., Ussing, H. H. 1958. The nature of the frog skin potential.Acta Physiol. Scand. 42: 298.PubMedGoogle Scholar
  30. Leblanc, G., Lemonnier, R. 1971. Lithium uptake by isolated epithelium from frog skin and its inhibition by amiloride.Proc. XXV Int. Congr. Physiol. Sci., Munich.Google Scholar
  31. Lindemann, B., Thorns, U. 1967. Fast potential spike of frog skin generated at the outer surface of the epithelium.Science 158: 1473.PubMedGoogle Scholar
  32. Martínez-Palomo, A., Erlij, D., Bracho, H. 1971. Localization of permeability barriers in the frog skin epithelium.J. Cell. Biol. 50: 277.PubMedGoogle Scholar
  33. Morel, F. 1958. Interpretation de la mesure des flux d'ions atravers une membrane biologique compartant un “compartiment” cellulaire; example des mouvements de sodium a travers la peau de grenouille.In: The Method of Isotopic Tracers Applied to Study of Active Ion Transport. J. Coursaget, editor. p. 155. Pergamon Press, London.Google Scholar
  34. Nagel, W., Dörge, A. 1970. Effects of amiloride on sodium transport of frog skin I. Action on intracellular sodium content.Pflüg. Arch. Ges. Physiol. 317: 84.Google Scholar
  35. Nagel, W., Dörge, A. 1971. On the location of the sodium transport pool in the frog skin.Proc. XXV Int. Congr. Physiol. Sci., Munich.Google Scholar
  36. Rawlins, F., Mateu, L., Fragachan, F., Whittembury, G. 1970. Isolated toad skin epithelium: transport characteristics.Pflüg. Arch. Ges. Physiol. 316: 64.Google Scholar
  37. Rotunno, C. A., Kowalewski, V., Cereijido, M. 1967. Nuclear spin resonance evidence for complexing of sodium in frog skin.Biochim. Biophys. Acta 135: 170.PubMedGoogle Scholar
  38. Rotunno, C. A., Pouchan, M. I., Cereijido, M. 1966. Location of the mechanism of active transport of sodium across the frog skin.Nature 210: 597.PubMedGoogle Scholar
  39. Rotunno, C. A., Vilallonga, F., Fernández, M., Cereijido, M. 1970. The penetration of sodium into the epithelium of the frog skin.J. Gen. Physiol. 55: 716.PubMedGoogle Scholar
  40. Salako, L. A., Smith, A. J. 1970. Changes in sodium pool and kinetics of sodium transport in frog skin produced by amiloride.Brit. J. Pharmacol. Chemother. 39: 99.Google Scholar
  41. Schwartz, T. L., Snell, F. M. 1968. Nonsteady-state three compartment tracer kinetics. II. Sodium flux transients in the toad urinary bladder in response to short circuit.Biophys. J. 8: 818, No. 7.PubMedGoogle Scholar
  42. Shporer, M., Civan, M. M. 1972. NMR of23Na linoleate-water: basis for an alternative interpretation of23Na spectra within cells.Biophys. J. 12: 16.Google Scholar
  43. Ussing, H. H., Windhager, E. E. 1964. Nature of shunt path and active sodium transport path through frog skin epithelium.Acta Phsiol. Scand. 61: 484.Google Scholar
  44. Vanatta, J. C., Bryant, L. A. 1970. Compartmentation of the sodium transport pool of the toad bladder.Proc. Soc. Exp. Biol. Med. 133: 385.PubMedGoogle Scholar
  45. Vôute, C. L., Ussing, H. H. 1970. Quantitative relation between hydrostatic pressure gradient, extracellular volume and active sodium transport in the epithelium of the frog skin, (R. temporaria).Exp. Cell. Res. 62: 375.PubMedGoogle Scholar
  46. Zadunaisky, J. A., Candia, O. A., Chiarandini, D. J. 1963. The origin of the shortcircuit current in isolated skin of the South American frogLeptodactylus ocellatus.J. Gen. Physiol. 47: 393.PubMedGoogle Scholar
  47. Zerahn, K. 1969. Nature and localization of the sodium pool during active transport in the isolated frog skin.Acta Physiol. Scand. 77: 272.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1973

Authors and Affiliations

  • J. H. Moreno
    • 1
    • 2
  • I. L. Reisin
    • 1
    • 2
  • E. Rodríguez Boulan
    • 1
    • 2
  • C. A. Rotunno
    • 1
    • 2
  • M. Cereijido
    • 1
    • 2
  1. 1.Dept. of Physical ChemistryUniversity of Buenos AiresBuenos AiresArgentina
  2. 2.Dept. of BiophysicsC.I.M.A.E.Buenos AiresArgentina

Personalised recommendations